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Abstract: We outline a general strategy for measuring spins, couplings and mixing angles

in the case of a heavy partner decay chain terminating in an invisible particle. We consider

the common example of a heavy scalar or fermion D decaying sequentially to other heavy

particles C, B and A by emitting a quark jet j and two leptons ℓ±n and ℓ∓f . We derive ana-

lytic formulas for the dilepton ({ℓ+ℓ−}) and the two jet-lepton ({jℓn} and {jℓf}) invariant

mass distributions for the case of most general couplings and mixing angles of the heavy

partners. We then consider various spin assignments for the heavy particles A, B, C and

D, and for each case, derive the relevant functional basis for the invariant mass distribu-

tions which contains the intrinsic spin information and does not depend on the couplings

and mixing angles. We propose a new method for determining the spins of the heavy part-

ners, using the three experimentally observable distributions {ℓ+ℓ−}, {jℓ+} + {jℓ−} and

{jℓ+} − {jℓ−}. We show that the former two only depend on a single model-dependent

parameter α, while the latter may depend on two other parameters β and γ. By fitting

these distributions to our set of basis functions, we are able to do a pure measurement

of the spins per se. Our method is also applicable at a pp̄ collider such as the Tevatron,

for which the previously proposed lepton charge asymmetry is identically zero and does

not contain any spin information. In the process of determining the spins, we also end up

with an independent measurement of the parameters α, β and γ, which represent certain

combinations of the couplings and the mixing angles of the heavy partners A, B, C and D.
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1. Introduction

The ongoing Run II of the Fermilab Tevatron and the imminent turn-on of the Large

Hadron Collider (LHC) at CERN are beginning to explore the physics of the Terascale.

There are sound theoretical reasons to believe that some new physics beyond the Standard

Model (BSM) is going to be revealed in those experiments. Perhaps the most compelling

phenomenological evidence for BSM particles and interactions at the TeV scale is provided

by the dark matter problem [1]. It is a tantalizing coincidence that a neutral, weakly

interacting massive particle (WIMP) in the TeV range can explain all of the observed dark

matter in the Universe. A typical WIMP does not interact in the detector and can only

manifest itself as missing energy. The WIMP idea therefore greatly motivates the study of

missing energy signatures at the Tevatron and the LHC [2].

The long lifetime of the dark matter WIMPs is typically ensured by some new exact

symmetry, e.g. R-parity in supersymmetry [3], KK parity in models with extra dimen-

sions [4], T -parity in Little Higgs models [5, 6], U -parity [7, 8] etc. The particles of the

Standard Model (SM) are not charged under this new symmetry, but the new particles

are, and the lightest among them is the dark matter WIMP. This setup guarantees that

the WIMP cannot decay, and more importantly, that WIMPs are always pair-produced at

colliders. The cross-sections for direct production of WIMPs (tagged with a jet or a photon

from initial state radiation) at hadron colliders are typically too small to allow observation

above the SM backgrounds [9]. Therefore one typically concentrates on the pair produc-

tion of the other, heavier particles (e.g. superpartners, KK-partners, or T -partners), which

also carry nontrivial new quantum numbers just like the WIMPs. Once produced, those

heavier partners will cascade decay down, emitting SM particles which are in principle

observable in the detector. However, each such cascade also inevitably ends up with an

invisible WIMP, whose energy and momentum are unknown. Since the heavy partners are

being pair-produced, there are two such cascades in each event, and therefore, two unknown

WIMP momenta. In addition, at hadron colliders the total parton level energy and mo-

mentum in the center of mass frame are also unknown, and thus the exact reconstruction

of the decay chains on an event by event basis is a very challenging task [10 – 12].

The lack of fully reconstructed events makes the mass and spin determination of the

heavy partners rather difficult. Due to the escaping WIMPs, the heavy partners cannot

be reconstructed as resonances in the invariant mass distributions of their decay prod-

ucts. Their masses therefore must be measured from (a sufficient number of) kinematic

endpoints [13 – 17]. The method can be successful, if a suitable cascade decay chain is iden-

tified in the data. An example of such a decay chain is presented in figure 1, where we show

the sequence of three two-body decays D → C + q, C → B + ℓn and B → A + ℓf . Here D,

C, B and A are some heavy particles with masses mD, mC , mB and mA, correspondingly.

For simplicity, throughout this paper we shall assume that all heavy particles are on-shell,

i.e.

mD > mC > mB > mA . (1.1)

We shall take the visible decay products to be a quark jet q and two leptons (either electron
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D C B A
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m2

C

m2
D
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m2

B

m2
C

z =
m2

A

m2
B

q ℓn ℓf

cLPL + cRPR bLPL + bRPR aLPL + aRPR

Figure 1: The typical cascade decay chain under consideration in this paper. At each vertex we

assume the most general coupling (see section 1.2 for the exact definitions) and we quote our results

in terms of the dimensionless mass ratios x, y and z.

or muon), in that order.1 For discussion purposes, the leptons are often referred to as “near”

(ℓn) and “far” (ℓf ), although this distinction is difficult to make in the actual data. Our

setup follows closely the conventions of refs. [17, 19 – 22]. Accordingly, we shall also find it

convenient to express our results in terms of the mass ratios

x ≡ m2
C

m2
D

, y ≡ m2
B

m2
C

, z ≡ m2
A

m2
B

. (1.2)

For a variety of reasons, the particular decay sequence exhibited in figure 1 has at-

tracted a lot of interest in the past and has been extensively studied both in relation to

an eventual discovery of new physics as well as precision measurements of the new physics

parameters. Rather early on, it was realized that this decay chain commonly occurs in

the most popular models of low energy supersymmetry, such as minimal supergravity

(MSUGRA), minimal gauge mediation [23], minimal anomaly mediation [24, 25], minimal

gaugino mediation [26], etc. More recently it was pointed out that the same chain may also

occur in a non-supersymmetric context, e.g. Universal Extra Dimensions (UED) [27, 28]

and Little Higgs theories with T -parity [29]. Therefore, even if the observable SM particles

(the quark jet and the two leptons) can be uniquely identified, there may still be several

competing BSM interpretations. Recently there has been a lot of effort on developing var-

ious techniques for discriminating among different model scenarios [19 – 22, 30 – 48]. The

crux of the problem is the fact that the spin of the missing particle A is unknown, and

this gives rise to several distinct possibilities. Furthermore, the spin of particle A, even if

it were known, still does not completely fix the spins of the preceding particles B, C and

1Note that this choice is made only for concreteness of the discussion and does not represent a funda-

mental limitation to our method. All of our results below can be readily applied in the general case where

the visible particles are any 3 SM fermions, not necessarily a quark and two leptons. The generalisation

of the method to the case where the set of visible SM particles includes SM gauge bosons and/or a Higgs

boson is straightforward and will be presented in a future publication [18].

– 3 –
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S Spins D C B A Example

1 SFSF Scalar Fermion Scalar Fermion q̃ → χ̃0
2 → ℓ̃ → χ̃0

1

2 FSFS Fermion Scalar Fermion Scalar q1 → ZH → ℓ1 → γH

3 FSFV Fermion Scalar Fermion Vector q1 → ZH → ℓ1 → γ1

4 FVFS Fermion Vector Fermion Scalar q1 → Z1 → ℓ1 → γH

5 FVFV Fermion Vector Fermion Vector q1 → Z1 → ℓ1 → γ1

6 SFVF Scalar Fermion Vector Fermion —

Table 1: Possible spin configurations of the heavy particles D, C, B and A in the decay chain of

figure 1. The last column gives one typical SUSY or UED example. In the following we shall use

the subscript S to label these 6 possibilities.

D. Indeed, since the SM particles in figure 1 are all spin 1/2 fermions, the particles A, B,

C and D must alternate between bosons and fermions, but the exact values of their spins

are a priori unknown. In the spirit of refs. [21, 22], here we shall limit our discussion2 only

to particles of spin 1 or less, namely we shall consider spin 0 scalars (S), spin 1/2 fermions

(F) and spin 1 vector particles (V). table 1 lists the 6 spin configurations for the decay

chain of figure 1, which were also considered in [21, 22]. Five of these six possibilities can

be readily accommodated in either supersymmetric or UED models. The last column of

table 1 gives some typical examples involving the squarks q̃, sleptons ℓ̃ and neutralinos χ̃0
i

in supersymmetry, the KK quarks q1, KK leptons ℓ1 and KK gauge bosons Z1 and γ1 in

5D (or 6D) UED [49], and the spinless gauge bosons γH and ZH in 6D UED [50]. The

last case in table 1 (SFVF) would require either a scalar leptoquark or a new gauge boson

carrying lepton number. Nevertheless, we include it in our study for completeness and also

to connect to the results of [21, 22]. We should emphasize from the start that we list the

supersymmetry and UED examples in table 1 only as an illustration and in what follows

we shall never restrict ourselves to any particular model. In particular, we shall not assume

any features of the mass spectrum or the couplings which might be expected in SUSY or

UED. For example, we shall not assume a degenerate mass spectrum for the cases which

might be expected in UED models, nor shall we assume any specific chirality structure of

the couplings as predicted in supersymmetry or UED. We shall instead keep the spectrum

completely arbitrary and also use the most general parametrization for the couplings of

the heavy partners. Furthermore, we shall not make any assumptions about the nature

of particle A – it may or may not be the lightest heavy partner, and it may or may not

be stable. While the dark matter problem mentioned at the beginning does provide good

theoretical motivation to look for missing energy signals, particle A here does not at all

have to be the dark matter WIMP, e.g. it may very well decay to other heavy particle

states, or even directly to SM particles. Consequently, the results presented in this paper

will be completely general and can be applied to any model of new physics which exhibits

a decay chain of the type shown in figure 1.

The main goal of this paper is to assess the possibility of discriminating between the

2Our method is nevertheless completely general and can be immediately generalised for higher spin

particles as well.
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six different alternatives in table 1, using the experimentally observable invariant mass

distributions of the visible particles (the quark and the two leptons) in figure 1. If such

a discrimination could be made in a completely model-independent fashion, one could

honestly claim a true measurement of the spins of the new particles. As a byproduct of

our method, we shall also obtain an independent measurement of certain combinations

of couplings and mixing angles of the heavy partners. The invariant mass distributions

(of the quark and leptons) are convenient because they are Lorentz invariant quantities,

and are certainly sensitive to the spins of the new particles. However, extracting spin,

coupling and/or mixing angle information out of them is a highly nontrivial task and to

the best of our knowledge has not been demonstrated up to now in a model-independent

setup like ours. The main difficulties can be classified into two categories, experimental

and theoretical, which we shall now discuss in some detail.

1.1 Experimental challenges

This class of problems is related to the ability of the experiment to uniquely identify the

particles coming from the cascade of figure 1.

E1 Jet combinatorics. The events in which the cascade decay of figure 1 occurs, will

also typically contain a number of additional jets. Some of those may come from

initial state radiation, others may originate from the opposite cascade in the same

event, and there may also be jets appearing from the decays of heavier particles into

particle D. This poses a severe combinatorics problem: which one of the many jets

in the event is the correct one to assign to the D decay in figure 1? Some of the

existing spin studies in the literature simply take for granted that the correct jet

can be somehow identified, others select the jet by matching to the true quark jet in

the event generator output, which is of course unobservable. The severity of the jet

combinatorics problem is rather model dependent and how well it can be dealt with

in practice depends on the individual case at hand. For example, if the mass splitting

between D and C is relatively large, one might expect the jet from the D decay to be

among the hardest in the event, and this fact can be used to improve the purity of the

sample. Fortunately, there exists a method (the mixed event technique) which should,

at least in principle, remove the effect from the wrong jet combinations [13]. More

recently, the method has been successfully applied to measuring SUSY masses at the

SPS1a study point [51]. A subtraction by a mixed event technique is particularly

well suited for our purposes, since our method for spin measurements only relies on

the shapes of the global distributions, and we do not need to guess the correct jet on

an event by event basis.

E2 Lepton combinatorics. There is an analogous combinatorics problem related to the

selection of the two leptons in the cascade of figure 1. First, in general, there may

be additional isolated leptons in the event, so one might consider requiring two and

only two leptons per event. However, even then, it is not guaranteed that those two

leptons are coming from the process in figure 1: for example, each of the two leptons

may come from a different cascade. Fortunately, there is again a universal method

– 5 –
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(opposite lepton flavor subtraction) which solves both of these lepton combinatorics

problems [13]. One forms the linear combination of {e+e−} + {µ+µ−} − {e+µ−} −
{µ+e−}, in which the effects of the uncorrelated leptons in the signal (as well as all

SM backgrounds involving top quarks, b-jets and W bosons) cancel out.3 In what

follows we shall be assuming that the measured invariant mass distributions have

already been properly subtracted to take care of the above mentioned jet and lepton

combinatorial problems.

E3 Quark-antiquark jet ambiguity. The cascade shown in figure 1 consists of two separate

processes. In the first one we produce a particle D, which decays to a quark jet and a

particle C. In the conjugate process, the antiparticle of D is produced and it decays

to an antiquark jet and the antiparticle of C. Since the two types of jets appear

identical in the detector,4 we cannot distinguish between these two cases, and the

observable invariant mass distributions are the sum of the individual contributions

from these two processes. This is a problem since, as we shall see, the sum tends

to wash out to some extent the spin correlations which may have been originally

present. In section 2 we shall first present our formulas for the individual quark and

antiquark jet distributions, but from section 3 onwards we shall always be adding up

the quark and antiquark contributions together, and we shall use the term “jet” to

refer to either a quark or an antiquark. For example, when we discuss a “jet-lepton”

distribution {jℓ} we shall always imply that it was constructed by adding up the

individual quark-lepton and antiquark-lepton distributions {qℓ} + {q̄ℓ}, so that this

quark-antiquark ambiguity does not represent a problem.

E4 Near and far lepton ambiguity. While the charge of the two leptons can be measured

very well, a priori one does not know which of them is the “near” lepton ℓn (i.e.,

coming from the decay of C) and which is the “far” lepton ℓf (i.e., coming from the

decay of B). Strictly speaking, once the mass spectrum of A, B, C and D is known,

one can select a subsample of the original events, in which ℓn and ℓf can be uniquely

identified. This can be done simply by ordering the two invariant masses mjℓ+ and

mjℓ− as mhigh
jℓ ≡ max{mjℓ+ ,mjℓ−} and mlow

jℓ ≡ min{mjℓ+,mjℓ−}, and selecting only

those events for which mhigh
jℓ happens to be above the observed kinematic endpoint

of the mlow
jℓ distribution. For that limited sample of events one can unambiguously

identify ℓn and ℓf . However, the price to pay is that the statistics becomes very

limited, especially if the kinematic endpoints of the mhigh
jℓ and mlow

jℓ distributions are

close to each other. We therefore choose not to apply this trick, and instead we

shall consider the combined mjℓn and mjℓf
distributions for each of the two possible

lepton charges. This allows us not only to avoid the near-far lepton ambiguity, but

3The method is not limited to dilepton events and can also be applied to events with 3 or more leptons. In

that case one would use all possible dilepton combinations, but include a weight factor for their contribution

to any given distribution, so that the total weight of any given event, summed over all dilepton combinations,

is 1.
4If q is a heavy flavor, the distinction can be made (statistically). To be conservative, we ignore this

possibility in order to demonstrate that our method works even in the worst case scenario of jet ambiguity.
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also to use the spin information contained in the mjℓf
distribution. Previous studies

on spin measurements have concentrated on the spin correlations between the jet

and the near lepton, for which relatively simple and compact analytical expressions

can be derived. The jet-far lepton contribution was regarded to a large extent as an

annoying background which tends to wash out the jet-near lepton correlations. Our

approach is very different: we actually treat both mjℓn and mjℓf
distributions on the

same footing. Since we have derived the most general expressions for both mjℓn and

mjℓf
, in our method we are in effect able to fit separately to each one, and we do not

even need to make the ℓn-ℓf discrimination on an event by event basis. In this sense

our method is using all of the available information about spins which is present in

the data.

Additionally, there are the usual complications on the experimental side, such as SM back-

grounds, detector acceptance and resolution, triggering etc. All of these factors should be

taken into account when trying to decide how well our method will work in any particular

case. But the main advantage of our method is that it is completely general, and can always

be applied, even in the extremely complex environment of a hadron collider experiment.

1.2 Theoretical issues

Even if none of the experimental issues E1-E4 discussed above ever existed, e.g. we had a

perfect detector, and we could somehow identify on an event by event basis with absolute

certainty which particular jet and two leptons came from the cascade in figure 1, and

furthermore, we could discriminate q from q̄ as well as ℓn from ℓf ; even in that idealized

case, there would still have been a long way to go towards a clean spin measurement, i.e. a

discrimination between the 6 cases of table 1. The problem is that the measured invariant

mass distributions depend on all of the following 4 factors:

T1 Mass spectrum. It is well known that the shapes of the observed invariant mass

distributions in general depend on the heavy partner spectrum. In fact this has

been used in the past to make mass measurements of the heavy partner masses,

especially in the case when one of the heavy particles in the chain is off-shell [52,

53]. Mass measurements are therefore a useful (but not necessary — see below)

first step towards determining the spins. For simplicity, throughout this paper we

assume that all masses mA, mB, mC and mD have already been determined from

kinematic endpoints. This assumption is common with all previous spin studies. It

appears rather feasible, since the mass measurements only require the extraction of

the kinematic endpoints, which are sharp features in the invariant mass distributions,

and those are likely to be seen in the data much earlier than the actual shape of the

distributions. However, we should emphasize that our assumption about the known

mass spectrum was made only for simplicity, and to keep the discussion focused

on the more challenging measurements like the spins, couplings and mixing angles.

Our method in fact does not require any prior knowledge of the mass spectrum.

When the mass spectrum is a priori unknown, the fits described in section 4 would

– 7 –
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actually pick up the correct values of the masses, in addition to the spin and coupling

measurements.

T2 Particle-antiparticle ambiguity (D/D̄). This problem is related to the experimental

issue E3 from the previous subsection. Since we do not know if the jet was initiated by

a quark or an antiquark, we also do not know whether the heavy particle cascade was

initiated by a particle D or its antiparticle D̄. At a pp̄ collider such as the Tevatron,

the symmetry of the initial state implies that the fraction f of D particles produced

in the data should be equal to the fraction f̄ of antiparticles D̄. Unfortunately, at

a pp collider like the LHC, the initial state is not symmetric, so one may expect

an excess of particles over antiparticles: f > f̄ , but the precise value of this excess

∆f ≡ f − f̄ is a priori unknown. Therefore at the LHC f is in principle an unknown

parameter, which significantly affects the observable {jℓ+} and {jℓ−} invariant mass

distributions. Most previous studies of spin measurements have fixed f to the value

for the corresponding study point [19, 20]. However, in the absence of an independent

measurement of f , this is unjustified. The influence of f on the spin extraction was

considered in [41, 39], where f was left as a floating parameter and consequently the

extraction of the spins became much more difficult. In what follows we shall follow

a similar approach, namely, we shall not make any assumptions about the value of

f when we discuss measurements at the LHC and we shall instead treat f as a free

input parameter. Only in section 4.2, where we apply our method to the Tevatron,

we shall take f = f̄ . Naturally, f̄ is trivially related to f as

f + f̄ = 1 . (1.3)

T3 Chirality of the fermion couplings. Note that the three SM particles in figure 1 are

all fermions, whose couplings to the heavy partners at each vertex are a priori un-

known. The observed invariant mass distributions depend on the chirality of those

couplings [30], and this presents a formidable challenge in measuring the spins. The

problem is that any given set of measured invariant mass distributions could in prin-

ciple be explained by one spin configuration with a certain choice of chiralities, or a

different spin configuration with a different choice of chiralities for the fermion cou-

plings. To the best of our knowledge, none of the existing spin studies have accounted

for this ambiguity in a consistent and fully model-independent way. Our main ob-

jective in this paper is to devise a method for spin measurements which makes no

assumptions about the chirality of the couplings at each vertex in figure 1. Cor-

respondingly, we shall keep those couplings completely arbitrary, and parameterize

them in the most general way in terms of independent chirality coefficients at each

vertex. For example, in the case of an interaction between a heavy spin 1/2 fermion

F , a heavy scalar Φ and a SM fermion f we take the interaction Lagrangian to be

L(F, f,Φ) = Ψ̄F (gLPL + gRPR)ΨfΦ + h.c. (1.4)

where gL and gR are arbitrary (and in general complex) coefficients. In general, there

are three different sets of {gL, gR}, one at each vertex of figure 1. We shall denote

– 8 –
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them as {cL, cR}, {bL, bR} and {aL, aR}, as shown in figure 1. Similarly, in case of

an interaction between a heavy spin 1/2 fermion F , a heavy vector boson Aµ and a

SM fermion f we use the interaction Lagrangian

L(F, f,Aµ) = Ψ̄F γµ(gLPL + gRPR)ΨfAµ + h.c. (1.5)

where just like before the coefficients {gL, gR} = {cL, cR}, {bL, bR} or {aL, aR}, de-

pending on the vertex. In what follows we present our results in terms of these most

general coefficients {cL, cR}, {bL, bR} and {aL, aR}. According to our convention,

the couplings {cL, cR} are always associated with the D-C-q vertex, the couplings

{bL, bR} are always associated with the C-B-ℓn vertex, and the couplings {aL, aR}
are always associated with the B-A-ℓf vertex. We shall not be specifying explic-

itly whether a given pair such as {aL, aR} parameterizes the interaction (1.4) or the

interaction (1.5), since that should be clear from the context.

We shall see below that the shapes of the invariant mass distributions only depend

on the relative chirality of each vertex, therefore it is convenient to unit normalize

the couplings as

|aL|2 + |aR|2 = 1 , (1.6)

|bL|2 + |bR|2 = 1 , (1.7)

|cL|2 + |cR|2 = 1 , (1.8)

In that case, the relative chirality at each vertex is parameterized in terms of a single

parameter, which can be taken as an angle:

tan ϕa =
|aR|
|aL|

, tan ϕb =
|bR|
|bL|

, tan ϕc =
|cR|
|cL|

. (1.9)

By convention, we shall take all three of these angles to be defined in the range [0, π
2 ]

(as opposed to [π, 3π
2 ]). The angles ϕa, ϕb and ϕc encode all of the relevant5 model

dependence, e.g. the nature of the interaction and the mixing angles of the heavy

partner mass eigenstates. It is worth emphasizing that we consider the couplings gL

and gR in eqs. (1.4), (1.5) to be the couplings in the mass eigenstate basis for the

heavy partners. Therefore, whenever there is mixing among the heavy partner states,

our couplings gL and gR are in general matrices which are related to the couplings g
(0)
L

and g
(0)
R in the interaction eigenstate basis through rotations by the corresponding

mixing angles

gL,R ≡ UF
† g

(0)
L,R UB , (1.10)

5At this point it may be useful to do a quick count of the relevant degrees of freedom. For example,

consider the B-A-ℓf vertex parameterized by {aL, aR}. Since aL ≡ |aL|e
φL and aR ≡ |aR|e

φR are in general

complex parameters, originally there are four degrees of freedom (|aL|, |aR|, φL and φR) parameterizing

each of the SM fermion interactions (1.4), (1.5). One combination of |aL| and |aR| is eliminated through

the normalisation condition (1.6), while (1.9) simply parameterizes the other combination of |aL| and |aR|

in terms of ϕa. The remaining two degrees of freedom, the phases φL and φR, remain arbitrary and cannot

be measured from the invariant mass distributions that we are considering here. Instead, they will have to

be measured by some other means.

– 9 –



J
H
E
P
1
0
(
2
0
0
8
)
0
8
1

where the matrix UF (UB) diagonalises the mass matrix of the corresponding heavy

fermion (boson). Due to this mixing, in general we do not expect our couplings

gL and gR to be purely chiral, even in models where one starts with purely chiral

couplings g
(0)
L and g

(0)
R in the interaction eigenstate basis. The effect of heavy fermion

mixing UF in a specific UED model was previously considered in [42], and here we

generalise the discussion to the case of arbitrary heavy fermion mixing UF, arbitrary

heavy boson mixing UB, and arbitrary couplings g
(0)
L and g

(0)
R . Clearly, there is an

enormous number of model-dependent parameters contained in UF, UB, g
(0)
L and

g
(0)
R , and it will be rather hopeless to try to measure them all at once. One of

the main results of this paper will be to identify which particular combinations of

these coupling and mixing angle parameters can be experimentally measured from

the invariant mass distributions of the three SM fermions (in our case, q, ℓn and ℓf ),

and to propose the actual method for measuring them. We shall find that there are

three such combinations, which we shall call α, β and γ (for details, see sections 4

and 5.5). Each one of them is potentially experimentally accessible, and represents

some combination of couplings and mixing angles as illustrated in eq. (1.10). It is in

this sense that our method yields a measurement of the couplings and mixing angles

of the heavy partners, as advertised in the abstract.

T4 Spins. Finally, the invariant mass distributions also contain information about the

spins of the heavy particles along the decay chain. For example, pure phase space pre-

dicts flat (in m2) invariant mass distributions for SM particle pairs originating from

adjacent vertices in the decay chain. Deviation from this pure phase space prediction

implies some kind of spin correlations [19], but what type? Conversely, observing

distributions which are consistent with the pure phase space prediction does not nec-

essarily mean that all particles involved in the decay are scalars — spin correlations

may have been present for the individual subprocesses (to be defined below) but

may have been washed out when added up to form the experimentally observable

distributions. Below we shall encounter examples of both of these situations.

The general approach in previous spin studies has been to compare the data from a given

study point within one specific model to the corresponding data obtained from another

model alternative with different choice of spins for the heavy partners. A common flaw in

all such studies was that three of the four relevant factors, namely T1, T2 and T3, were

fixed to be identical in the two models, so that any remaining difference can be interpreted

as a manifestation of spins (the factor T4 above). However, this is not the correct approach

when it comes to actual pure measurements of spins in a model-independent fashion. Since

the chirality parameters ϕa, ϕb and ϕc and the particle-antiparticle ratio f are not inde-

pendently measured prior to the attempted spin determination, they need not have the

same values for each of the different spin configurations under study (in our case, the 6

ones listed in table 1) and should be allowed to float. Therefore, the proper question to

ask instead is:

Given the data, which (and how many) spin configuration gives a good fit to it
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for some choice of the chirality parameters ϕa, ϕb and ϕc, and for some choice

of the particle-antiparticle ratio f?

The main result of this paper is that we provide the tools needed to address this

question in a completely model-independent way, namely in order to determine whether a

given spin configuration “S” is consistent with the data or not, we do not need to specify

the values of f and f̄ , nor do we need to specify the chirality of the couplings ϕa, ϕb and

ϕc. In other words, we have divided the question posed above into two parts: for a given

mass spectrum (i.e. factor T1 is known),

• Q1: What is the spin, i.e. what is factor T4?

• Q2: What are the particle-antiparticle fractions f and f̄ (item T2 above) and what

are the couplings and mixing angles (item T3 above)?

Our method allows us to provide an independent answer to the spin question Q1 regardless

of the answer to the follow up question Q2. In this sense we are able to make a pure

measurement of spin in a model-independent way. Of course, as we shall see below, the

actual answer to the question Q1 may not be unique, and sometimes there are cases where

more than one particular spin configuration may fit the data. In fact in Sec 4.1 we shall

show that the model pairs {FSFS, FSFV} as well as {FVFS, FVFV} are quite often

indistinguishable.

Since we have decoupled the spin issue T4 from the f -f̄ issue T2, our method is not

limited to pp colliders such as LHC, and is equally applicable to the Tevatron. In contrast,

the lepton charge asymmetry proposed by Barr [19] is greatly affected by the value of f ,

for example it is predicted to be identically zero at the Tevatron and has no discriminating

power there with regards to spins. In this sense our method provides a pure measurement of

the spins and the spins alone. What is more, in the process of answering the spin question,

we also get a measurement of some combination of the couplings and f and f̄ . In this sense

our method is also the first and most general attempt to measure mixing angles of heavy

partners (e.g. superpartners) at the LHC.

The paper is organised as follows. In section 2 we describe the main idea of our

method and derive the main building blocks for the spin measurement. In particular, we

give exact analytical expressions for all relevant invariant mass distributions (including

{qℓ±f } and {q̄ℓ±f }) in the most general case of arbitrary couplings, arbitrary f and f̄ , and

arbitrary mass spectrum, for each of the six cases from table 1. Our results in section 2

generalize those of refs. [20 – 22, 17]. In section 3 we reorganise our results from section 2 to

form the experimentally observable invariant mass distributions {jℓ+}, {jℓ−} and {ℓ+ℓ−}.
We also derive the exact combinations of couplings and mixing angles which are being

measured as a byproduct of the spin measurement.6 Section 4 begins by summarising the

key analytical results from the previous two sections, and outlines our method for spin and

6Readers who are only interested in the practical applications of our results, and would prefer to skip

these mathematical derivations, are invited to jump directly to sections 4 and 5, which are self-contained

and can be read independently from the more technical sections 2 and 3.
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coupling measurements. In section 4.1 we prove analytically the degeneracy of the {FSFS,

FSFV} and {FVFS, FVFV} model pairs — we derive the relation between the couplings

and mixing angles within each pair of models which would result in identical observable

invariant mass distributions for those model pairs. In section 4.2 we specify our results

to the case of pp̄ colliders such as the Tevatron and show that our spin analysis method

can be just as successful there. Finally, in section 5 we provide an illustration of an actual

idealised measurement, using a mass spectrum and couplings as for the SPS1a study point

in supersymmetry. Assuming that the data comes from each one of the 6 models from

table 1 in turn, we then demonstrate how well the remaining 5 possibilities can be ruled in

or out. This results in a total of 36 different case studies, the results of which are presented

and analysed in that section. In section 6 we summarize our main conclusions, and discuss

the pros and cons of our method in comparison to other proposals for spin measurements

in the literature.

2. General expressions for the invariant mass distributions

2.1 Preliminaries

The basic idea behind our method is the following. For any given spin configuration S, we

write the invariant mass distribution of a pair of SM particles from figure 1 as

(

dN

dm̂2
p

)

S

=

2
∑

I=1

2
∑

J=1

K
(p)
IJ (f, ϕa, ϕb, ϕc)F (p)

S;IJ(m̂2
p;x, y, z) , (2.1)

where the index p denotes one of the five possible SM particle pairs: p =

{jℓ−n , jℓ+
n , jℓ−f , jℓ+

f , ℓ+ℓ−}; m̂p is the unit-normalised invariant mass

m̂p ≡ mp

mmax
p

, 0 ≤ m̂p ≤ 1 , (2.2)

i.e. the invariant mass mp scaled by the value of the corresponding kinematic endpoint

mmax
p , which has already been measured from the corresponding mp distribution. The mass

ratios x, y and z were already defined in (1.2), while {IJ} is a pair of indices denoting one

out of four possible classes of subprocesses PIJ which will be discussed in detail below in

section 2.2. The coefficients K
(p)
IJ and the functions F (p)

S;IJ will be explicitly defined later in

section 2.3.

The general expression (2.1) corroborates our discussion in section 1.2 – we see that

the invariant mass distributions indeed depend simultaneously on all of the four factors

(T1-T4) discussed earlier. However, notice that the coefficients KIJ in the expansion (2.1)

only depend on the particle/antiparticle fraction f and the chiralities ϕa, ϕb and ϕc, i.e.

factors T2 and T3. On the other hand, the functions F (p)
S;IJ(m̂2;x, y, z) only depend on

the mass spectrum (factor T1) and the spin (factor T4). Once the spectrum is measured

and the mass ratios x, y and z become known, the functions F (p)
S;IJ only depend on m̂ and

provide a unique basis which can be fitted to the data for each of the measured distributions

{p}. Since the functions F do not depend on the model dependent parameters f , ϕa, ϕb
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and ϕc, this fit can be done in a completely model-independent way, without any prior

knowledge about the nature of the particles A, B, C and D, the nature of their couplings,

or the size of their mixing angles. For each of the 6 possible spin configurations S, this

fit may or may not yield a good match: then, those spin configurations which give a bad

fit to the data will be ruled out. Conversely, the spin configurations which give a good fit

will be ruled in, and furthermore, the values of the fitted coefficients K will represent a

measurement of the couplings and mixing angles of the heavy partners.

2.2 Classification of helicity combinations

Table 2 lists all possible helicity7 combinations (32 altogether) contributing to the process

of figure 1. The 8 combinations shown in blue have been previously considered in [20 –

22]. The remaining 24 combinations shown in red are being considered here for the first

time. We find it convenient to classify all possibilities into four categories PIJ , I, J = 1, 2,

where each category gives rise to the same functional dependence for the three invariant

mass distributions of interest: {jℓ±n }, {jℓ±f } and {ℓ±n ℓ∓f }. We name these four categories

as follows:

• Processes of type P11. These include all cases where the helicities of the (anti)quark

jet and near lepton are the same, while the helicities of the two leptons are opposite.

The four processes of type 1 in the nomenclature of refs. [20 – 22] fall into this set. In

addition in this group we find four new combinations involving right-handed quarks.

• Processes of type P21. These include all cases where the helicities of the (anti)quark

jet and near lepton as well as the helicities of the two leptons are opposite. The four

processes of type 2 in the nomenclature of refs. [20 – 22] fall into this set. Again, there

are four new cases involving right-handed quarks. Note that the processes of type

P21 are simply obtained from those of type P11 by interchanging q ↔ q̄ while keeping

the chirality labels fixed.

• Processes of type P12. Here the helicities of the (anti)quark jet and near lepton as

well as the helicities of the two leptons are the same. These processes are obtained

from those of P11 by changing the chirality label of the far lepton: L ↔ R for ℓ±f .

• Processes of type P22. Here the helicities of the (anti)quark jet and near lepton are

opposite, while the helicities of the two leptons are the same. These processes can

be obtained from P12 by interchanging q ↔ q̄, or alternatively, from P21 by changing

the chirality label of the far lepton: L ↔ R for ℓ±f .

All processes falling into the last two categories are new, and more importantly, as we

shall see below, they give a qualitatively new functional dependence of the dilepton and

jℓf invariant mass distributions which was not exhibited in the previous studies [20 – 22].

7The helicity of a fermion should not be confused with the chirality label of the corresponding spinor,

which was defined in eqs. (1.4) and (1.5). For example, a fermion fL has an opposite helicity from its

antiparticle f̄L, and similarly for fR.
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Processes P11 Processes P12

{qL, ℓ−L , ℓ+
L} {q̄L, ℓ+

L , ℓ−L} {qL, ℓ−L , ℓ+
R} {q̄L, ℓ+

L , ℓ−R}
f |cL|2|bL|2|aL|2 f̄ |cL|2|bL|2|aL|2 f |cL|2|bL|2|aR|2 f̄ |cL|2|bL|2|aR|2
{q̄L, ℓ−R, ℓ+

R} {qL, ℓ+
R, ℓ−R} {q̄L, ℓ−R, ℓ+

L} {qL, ℓ+
R, ℓ−L}

f̄ |cL|2|bR|2|aR|2 f |cL|2|bR|2|aR|2 f̄ |cL|2|bR|2|aL|2 f |cL|2|bR|2|aL|2
{qR, ℓ−R, ℓ+

R} {q̄R, ℓ+
R, ℓ−R} {qR, ℓ−R, ℓ+

L} {q̄R, ℓ+
R, ℓ−L}

f |cR|2|bR|2|aR|2 f̄ |cR|2|bR|2|aR|2 f |cR|2|bR|2|aL|2 f̄ |cR|2|bR|2|aL|2
{q̄R, ℓ−L , ℓ+

L} {qR, ℓ+
L , ℓ−L} {q̄R, ℓ−L , ℓ+

R} {qR, ℓ+
L , ℓ−R}

f̄ |cR|2|bL|2|aL|2 f |cR|2|bL|2|aL|2 f̄ |cR|2|bL|2|aR|2 f |cR|2|bL|2|aR|2
{q̄L, ℓ−L , ℓ+

L} {qL, ℓ+
L , ℓ−L} {q̄L, ℓ−L , ℓ+

R} {qL, ℓ+
L , ℓ−R}

f̄ |cL|2|bL|2|aL|2 f |cL|2|bL|2|aL|2 f̄ |cL|2|bL|2|aR|2 f |cL|2|bL|2|aR|2
{qL, ℓ−R, ℓ+

R} {q̄L, ℓ+
R, ℓ−R} {qL, ℓ−R, ℓ+

L} {q̄L, ℓ+
R, ℓ−L}

f |cL|2|bR|2|aR|2 f̄ |cL|2|bR|2|aR|2 f |cL|2|bR|2|aL|2 f̄ |cL|2|bR|2|aL|2
{q̄R, ℓ−R, ℓ+

R} {qR, ℓ+
R, ℓ−R} {q̄R, ℓ−R, ℓ+

L} {qR, ℓ+
R, ℓ−L}

f̄ |cR|2|bR|2|aR|2 f |cR|2|bR|2|aR|2 f̄ |cR|2|bR|2|aL|2 f |cR|2|bR|2|aL|2
{qR, ℓ−L , ℓ+

L} {q̄R, ℓ+
L , ℓ−L} {qR, ℓ−L , ℓ+

R} {q̄R, ℓ+
L , ℓ−R}

f |cR|2|bL|2|aL|2 f̄ |cR|2|bL|2|aL|2 f |cR|2|bL|2|aR|2 f̄ |cR|2|bL|2|aR|2
Processes P21 Processes P22

Table 2: Classification of all possible helicity combinations contributing to the process of figure 1.

The combinations shown in blue have been previously considered in [20 – 22]. The combinations

shown in red are being considered here for the first time. Under each helicity combination, we also

show the associated prefactor contributing to K
(p)
IJ in eq. (2.1).

It is worth noting that in the case of a heavy fermion (F), there is a distinction

between the Dirac and Majorana case. For a Dirac fermion, half of the processes within

each category PIJ of table 2 are absent, since the adjacent SM fermions must be a particle

and an antiparticle. For a Majorana fermion, there is no such restriction, and all processes

exhibited in table 2 are in principle allowed.

2.3 Invariant mass distributions

In principle, there are 9 invariant mass distributions that we can form:

(

dN

dm̂2
qℓ±n

)

S

=
1

2

2
∑

I=1

2
∑

J=1

K
(qℓ±n )
IJ (f, ϕa, ϕb, ϕc)F (jℓn)

S;IJ (m̂2
qℓ±n

;x, y, z) , (2.3)

(

dN

dm̂2
q̄ℓ±n

)

S

=
1

2

2
∑

I=1

2
∑

J=1

K
(q̄ℓ±n )
IJ (f, ϕa, ϕb, ϕc)F (jℓn)

S;IJ (m̂2
q̄ℓ±n

;x, y, z) , (2.4)





dN

dm̂2
qℓ±

f





S

=
1

2

2
∑

I=1

2
∑

J=1

K
(qℓ±

f
)

IJ (f, ϕa, ϕb, ϕc)F (jℓf )
S;IJ (m̂2

qℓ±f
;x, y, z) , (2.5)





dN

dm̂2
q̄ℓ±

f





S

=
1

2

2
∑

I=1

2
∑

J=1

K
(q̄ℓ±

f
)

IJ (f, ϕa, ϕb, ϕc)F (jℓf )
S;IJ (m̂2

q̄ℓ±f
;x, y, z) , (2.6)
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(

dN

dm̂2
ℓℓ

)

S

=
1

2

2
∑

I=1

2
∑

J=1

K
(ℓℓ)
IJ (f, ϕa, ϕb, ϕc)F (ℓℓ)

S;IJ(m̂2
ℓℓ;x, y, z) , (2.7)

where the factor of 1
2 on the right hand side was introduced for future convenience. Note

that it is the same set of functions F (jℓn)
S;IJ which enter both the {qℓn} and {q̄ℓn} distributions

F (qℓn)
S;IJ (m̂2;x, y, z) = F (q̄ℓn)

S;IJ (m̂2;x, y, z) ≡ F (jℓn)
S;IJ (m̂2;x, y, z) , (2.8)

and similarly, it is the same set of functions F (jℓf )
S;IJ which enter the {qℓf} and {q̄ℓf} distri-

butions:

F (qℓf )
S;IJ (m̂2;x, y, z) = F (q̄ℓf )

S;IJ (m̂2;x, y, z) ≡ F (jℓf )
S;IJ (m̂2;x, y, z) . (2.9)

In the following two subsections we shall separately define and discuss the functions

F (p)
S;IJ and the coefficients K

(p)
IJ appearing in the general expressions (2.3)–(2.7).

2.3.1 The functions F (p)
S;IJ

eqs. (2.3)–(2.7) show that all invariant mass distributions can be written in terms of three

sets of basis functions: F (jℓn)
S;IJ (m̂2;x, y, z), F (jℓf )

S;IJ (m̂2;x, y, z) and F (ℓℓ)
S;IJ(m̂2;x, y, z). We

shall define the basis functions to be unit normalized:
∫ ∞

0
F (jℓn)

S;IJ (m̂2;x, y, z) dm̂2 = 1 , (2.10)

∫ ∞

0
F (jℓf )

S;IJ (m̂2;x, y, z) dm̂2 = 1 , (2.11)

∫ ∞

0
F (ℓℓ)

S;IJ(m̂2;x, y, z) dm̂2 = 1 . (2.12)

With this normalisation, all basis functions F (jℓn)
S;IJ (m̂2;x, y, z), F (ℓℓ)

S;IJ(m̂2;x, y, z) and

F (jℓf )
S;IJ (m̂2;x, y, z) are defined in appendix A.

A few comments regarding the F (p)
S,IJ functions are in order. Recall that half of the

processes belonging to category P11 and P21 (in the classification of section 2.2) have been

previously considered in [20 – 22], so that the functions F (p)
S,11 and F (p)

S,21 in principle already

appear there. We find agreement with [20 – 22] for the case of F (p)
S,11 and F (p)

S,21, and we

supplement those results with the remaining two types of functions F (p)
S,12 and F (p)

S,22. We

shall now comment individually on each type p of basis functions F (p)
S,IJ .

Table 6 in appendix A shows that the F (jℓn)
S,IJ functions are pairwise equal:

F (jℓn)
S,11 (m̂2;x, y, z) = F (jℓn)

S,12 (m̂2;x, y, z) , (2.13)

F (jℓn)
S,21 (m̂2;x, y, z) = F (jℓn)

S,22 (m̂2;x, y, z) . (2.14)

These relations are easy to understand: processes PI2 differ from processes PI1 only by the

chirality label of the far lepton ℓf . However, the jℓn distribution does not know about the

far lepton, therefore the F (jℓn)
S;IJ function should be the same for both J = 1 and J = 2.
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Table 6 has essentially already appeared in [21] (see tables 10 and 11) and we reproduce it

here just for completeness.

On the other hand, table 7 of appendix A contains some new results for the F (ℓℓ)
S,IJ

functions. In this case there are still only two independent functions, but the functional

relationship is different from (2.13), (2.14):

F (ℓℓ)
S,11(m̂

2;x, y, z) = F (ℓℓ)
S,21(m̂

2;x, y, z) , (2.15)

F (ℓℓ)
S,12(m̂

2;x, y, z) = F (ℓℓ)
S,22(m̂

2;x, y, z) . (2.16)

Again, the reason behind these relations is easy to understand intuitively. Processes P1J

are related to processes P2J by simply interchanging q ↔ q̄, which, of course, does not

affect the two leptons which are further down the cascade decay chain. Because of (2.15),

refs. [20 – 22] found identical results for F (ℓℓ)
S,11 and F (ℓℓ)

S,21 (corresponding to processes of

type 1 and 2 in their notation), but missed the functions F (ℓℓ)
S,12 and F (ℓℓ)

S,22. This was a

direct consequence of the underlying model dependence, and in particular factor T3: the

studies [20 – 22] assumed very specific fixed values of the chirality coefficients (namely,

cL = 1, cR = 0, bL = 0, bR = 1, aL = 0, aR = 1 for the supersymmetry example and

cL = 1, cR = 0, bL = 1, bR = 0, aL = 1, aR = 0 for the UED example) and therefore

their results, while correct, are only valid within this limited model-dependent context.

In contrast, deriving the complete set of functions F (ℓℓ)
S,IJ for all possible sets of processes

PIJ allows us to address the spin question Q1 raised in the Introduction in a completely

model-independent fashion.

Similar remarks hold for the F (jℓf )
S;IJ functions in appendix A. Here again the functions

F (jℓf )
S;11 and F (jℓf )

S;21 agree8 with the results of [21], while the functions F (jℓf )
S;12 and F (jℓf )

S;22

are new. However, whether (and what type of) relations exist between the four functions

F (jℓf )
S;IJ varies from case to case (i.e. the value of the spin configuration index S). In the

three cases (SFSF, FSFS and FSFV) where there is an intermediate heavy scalar between

the emitted jet and far lepton, the F (jℓf )
S;IJ set is again reduced to only two independent

functions, however, the exact functional relations are also S-dependent: for S = 1 (SFSF)

we find

F (jℓf )
1,11 (m̂2;x, y, z) = F (jℓf )

1,12 (m̂2;x, y, z) , (2.17)

F (jℓf )
1,21 (m̂2;x, y, z) = F (jℓf )

1,22 (m̂2;x, y, z) , (2.18)

while for S = 2 (FSFS) and S = 3 (FSFV) we find

F (jℓf )
S,11 (m̂2;x, y, z) = F (jℓf )

S,21 (m̂2;x, y, z) for S = 2, 3 , (2.19)

F (jℓf )
S,12 (m̂2;x, y, z) = F (jℓf )

S,22 (m̂2;x, y, z) for S = 2, 3 . (2.20)

8The only discrepancy we found was in the constant coefficient in front of the ln y and ln m̂2 terms in

the F
(jℓf )

6;11 function: in eq. (B.9) of ref. [21] it is listed as −(z + 4y) while we find −(1 + 4y)z. Since our

results agree with the numerical results of figures 5a and 5b in [21], we believe that eq. (B.9) in [21] has a

typo.
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In the remaining 3 cases S = 4, 5, 6 (i.e. FVFS, FVFV and SFVF) we find that all four

functions F (jℓf )
S;IJ are independent.

2.3.2 The coefficients K
(p)
IJ

Having defined the complete sets of functions F (p)
S;IJ entering the general expressions (2.3)–

(2.7), it now remains to define the coefficients K
(p)
IJ (f ;ϕa, ϕb, ϕc) entering those formulas.

Notice that these coefficients do not carry a spin index S, i.e. they are independent of the

assumed spin configuration. Therefore we only need to define them for each fermion pair

p = {qℓ±n , q̄ℓ±n , qℓ±f , q̄ℓ±f , ℓℓ}.
Using the factors from table 2, for the coefficients belonging to processes P11 we readily

obtain

K
(qℓ−n )
11 = K

(qℓ+f )

11 = f |cL|2|bL|2|aL|2 + f |cR|2|bR|2|aR|2 , (2.21)

K
(q̄ℓ−n )
11 = K

(q̄ℓ+
f

)

11 = f̄ |cL|2|bR|2|aR|2 + f̄ |cR|2|bL|2|aL|2 , (2.22)

K
(qℓ+n )
11 = K

(qℓ−
f

)

11 = f |cL|2|bR|2|aR|2 + f |cR|2|bL|2|aL|2 , (2.23)

K
(q̄ℓ+n )
11 = K

(q̄ℓ−
f

)

11 = f̄ |cL|2|bL|2|aL|2 + f̄ |cR|2|bR|2|aR|2 . (2.24)

The corresponding coefficients for processes P12 can be now simply obtained from (2.21)–

(2.24) by the substitution aL ↔ aR:

K
(qℓ−n )
12 = K

(qℓ+
f

)

12 = f |cL|2|bL|2|aR|2 + f |cR|2|bR|2|aL|2 , (2.25)

K
(q̄ℓ−n )
12 = K

(q̄ℓ+
f

)

12 = f̄ |cL|2|bR|2|aL|2 + f̄ |cR|2|bL|2|aR|2 , (2.26)

K
(qℓ+n )
12 = K

(qℓ−
f

)

12 = f |cL|2|bR|2|aL|2 + f |cR|2|bL|2|aR|2 , (2.27)

K
(q̄ℓ+n )
12 = K

(q̄ℓ−
f

)

12 = f̄ |cL|2|bL|2|aR|2 + f̄ |cR|2|bR|2|aL|2 . (2.28)

Next, replacing f ↔ f̄ and q ↔ q̄ in (2.21)–(2.24) gives the corresponding coefficients for

processes P21:

K
(q̄ℓ−n )
21 = K

(q̄ℓ+
f

)

21 = f̄ |cL|2|bL|2|aL|2 + f̄ |cR|2|bR|2|aR|2 , (2.29)

K
(qℓ−n )
21 = K

(qℓ+
f

)

21 = f |cL|2|bR|2|aR|2 + f |cR|2|bL|2|aL|2 , (2.30)

K
(q̄ℓ+n )
21 = K

(q̄ℓ−
f

)

21 = f̄ |cL|2|bR|2|aR|2 + f̄ |cR|2|bL|2|aL|2 , (2.31)

K
(qℓ+n )
21 = K

(qℓ−
f

)

21 = f |cL|2|bL|2|aL|2 + f |cR|2|bR|2|aR|2 . (2.32)

Finally, replacing aL ↔ aR in (2.29)–(2.32) yields the coefficients for processes P22:

K
(q̄ℓ−n )
22 = K

(q̄ℓ+f )

22 = f̄ |cL|2|bL|2|aR|2 + f̄ |cR|2|bR|2|aL|2 , (2.33)

K
(qℓ−n )
22 = K

(qℓ+
f

)

22 = f |cL|2|bR|2|aL|2 + f |cR|2|bL|2|aR|2 , (2.34)

K
(q̄ℓ+n )
22 = K

(q̄ℓ−f )

22 = f̄ |cL|2|bR|2|aL|2 + f̄ |cR|2|bL|2|aR|2 , (2.35)
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K
(qℓ+n )
22 = K

(qℓ−
f

)

22 = f |cL|2|bL|2|aR|2 + f |cR|2|bR|2|aL|2 . (2.36)

The coefficients K
(ℓℓ)
IJ for the dilepton distributions can be expressed in various ways,

for example in terms of the coefficients involving the near lepton ℓn

K
(ℓℓ)
IJ = K

(qℓ−n )
IJ + K

(q̄ℓ−n )
IJ + K

(qℓ+n )
IJ + K

(q̄ℓ+n )
IJ ; (2.37)

in terms of the coefficients involving the far lepton ℓf :

K
(ℓℓ)
IJ = K

(qℓ−
f

)

IJ + K
(q̄ℓ−

f
)

IJ + K
(qℓ+

f
)

IJ + K
(q̄ℓ+

f
)

IJ ; (2.38)

in terms of the coefficients involving the positively charged lepton ℓ+

K
(ℓℓ)
IJ = K

(qℓ+n )
IJ + K

(q̄ℓ+n )
IJ + K

(qℓ+f )

IJ + K
(q̄ℓ+f )

IJ ; (2.39)

or finally, in terms of the coefficients involving the negatively charged lepton ℓ−:

K
(ℓℓ)
IJ = K

(qℓ−n )
IJ + K

(q̄ℓ−n )
IJ + K

(qℓ−
f

)

IJ + K
(q̄ℓ−

f
)

IJ . (2.40)

All of the definitions (2.37)–(2.40) are equivalent because of the relations (2.21)–(2.36)

existing between the various coefficients. Notice the normalisation condition

2
∑

I=1

2
∑

J=1

K
(ℓℓ)
IJ = 2 . (2.41)

With the definitions (2.21)–(2.36) and the conventions (2.10)–(2.12) and (1.6)–(1.8),

our distributions (2.3)–(2.7) are normalised as follows:

∫ ∞

0

(

dN

dm̂2
qℓ±n

)

S

dm̂2
qℓ±n

=

∫ ∞

0





dN

dm̂2
qℓ±f





S

dm̂2
qℓ±

f

=
f

2
, (2.42)

∫ ∞

0

(

dN

dm̂2
q̄ℓ±n

)

S

dm̂2
q̄ℓ±n

=

∫ ∞

0





dN

dm̂2
q̄ℓ±

f





S

dm̂2
q̄ℓ±f

=
f̄

2
, (2.43)

∫ ∞

0

(

dN

dm̂2
ℓℓ

)

S

dm̂2
ℓℓ = 1 . (2.44)

It is now clear how the factor of 1
2 in eqs. (2.3)–(2.7) is related to the normalisation:

the dilepton distribution (2.7), which is experimentally observable, is unit normalised, as

seen by eq. (2.44). On the other hand, eqs. (2.42) and (2.43) show that the individual

{qℓn}, {q̄ℓn}, {qℓf} and {q̄ℓf} distributions are not unit normalised. However, this is not

a problem, since those distributions cannot be separately observed. In fact, as we shall see

in the next section, the normalisation (2.42), (2.43) is precisely what is needed in order to

unit normalise the observable invariant mass distributions for {jℓ+} and {jℓ−}.
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3. Observable distributions in a {q, ℓ±, ℓ∓} chain

3.1 Invariant mass formulas in the {F (p)
S;IJ} basis

If we could identify the nature of the jet (q versus q̄) on an event by event basis, we could use

directly the distributions (2.3), (2.7) derived in the previous section. As mentioned in the

Introduction, there may be cases where this is possible, e.g. if q is a b-quark, or alternatively,

if it is a lepton so that the decay chain of figure 1 represents a trilepton signature. Here,

however, we shall make the conservative assumption, which also happens to be true in

many models, that q is a light flavor quark, so that the experimental distinction between

a q and q̄ cannot be made. In that case, we have to add the corresponding distributions

involving a q and a q̄:

(

dN

dm̂2
jℓ±n

)

S

=

(

dN

dm̂2
qℓ±n

)

S

+

(

dN

dm̂2
q̄ℓ±n

)

S

≡ 1

2

2
∑

I=1

2
∑

J=1

K
(jℓ±n )
IJ (f, ϕa, ϕb, ϕc)F (jℓn)

S;IJ (m̂2
jℓ±n

;x, y, z) , (3.1)





dN

dm̂2
jℓ±f





S

=





dN

dm̂2
qℓ±f





S

+





dN

dm̂2
q̄ℓ±f





S

≡ 1

2

2
∑

I=1

2
∑

J=1

K
(jℓ±f )

IJ (f, ϕa, ϕb, ϕc)F (jℓf )
S;IJ (m̂2

jℓ±
f

;x, y, z) . (3.2)

Since the F (p)
S;IJ functions do not depend on the q-q̄ ambiguity (factor E3), the new set

of coefficients K
(jℓ±n )
IJ and K

(jℓ±
f

)

IJ can be simply related to those already introduced in the

previous section:

K
(jℓ±n )
IJ (f, ϕa, ϕb, ϕc) = K

(qℓ±n )
IJ (f, ϕa, ϕb, ϕc) + K

(q̄ℓ±n )
IJ (f, ϕa, ϕb, ϕc) , (3.3)

K
(jℓ±

f
)

IJ (f, ϕa, ϕb, ϕc) = K
(qℓ±

f
)

IJ (f, ϕa, ϕb, ϕc) + K
(q̄ℓ±

f
)

IJ (f, ϕa, ϕb, ϕc) . (3.4)

Substituting the definitions (2.21)–(2.36) into (3.3) and (3.4), we find that the K
(jℓ)
IJ co-

efficients can be expressed in terms of the particle-antiparticle fraction f and the relative

chiralities ϕa, ϕb and ϕc as follows

K
(jℓ−n )
11 (f, ϕa, ϕb, ϕc) = (f |cL|2 + f̄ |cR|2)|bL|2|aL|2 + (f̄ |cL|2 + f |cR|2)|bR|2|aR|2 , (3.5)

K
(jℓ−n )
12 (f, ϕa, ϕb, ϕc) = (f |cL|2 + f̄ |cR|2)|bL|2|aR|2 + (f̄ |cL|2 + f |cR|2)|bR|2|aL|2 , (3.6)

K
(jℓ−n )
21 (f, ϕa, ϕb, ϕc) = (f̄ |cL|2 + f |cR|2)|bL|2|aL|2 + (f |cL|2 + f̄ |cR|2)|bR|2|aR|2 , (3.7)

K
(jℓ−n )
22 (f, ϕa, ϕb, ϕc) = (f̄ |cL|2 + f |cR|2)|bL|2|aR|2 + (f |cL|2 + f̄ |cR|2)|bR|2|aL|2 . (3.8)
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Figure 2: A contour plot of cos ϕ̃c as a function of cosϕc and f .

The remaining K
(jℓ)
IJ coefficients can be related to these as

K
(jℓ−n )
11 = K

(jℓ+
f

)

11 = K
(jℓ+n )
21 = K

(jℓ−
f

)

21 , (3.9)

K
(jℓ−n )
12 = K

(jℓ+
f

)

12 = K
(jℓ+n )
22 = K

(jℓ−
f

)

22 , (3.10)

K
(jℓ−n )
21 = K

(jℓ+
f

)

21 = K
(jℓ+n )
11 = K

(jℓ−
f

)

11 , (3.11)

K
(jℓ−n )
22 = K

(jℓ+
f

)

22 = K
(jℓ+n )
12 = K

(jℓ−
f

)

12 . (3.12)

It is important to notice that while the coefficients K
(jℓ)
IJ (f, ϕa, ϕb, ϕc) defined in (3.5)–

(3.12) depend on all four variables f , ϕa, ϕb and ϕc, the dependence on f and ϕc only ap-

pears through the combinations f |cL|2+ f̄ |cR|2 = f cos2 ϕc + f̄ sin2 ϕc and f̄ |cL|2 +f |cR|2 =

f̄ cos2 ϕc + f sin2 ϕc. We shall therefore find it convenient to introduce an alternative chi-

rality parameter ϕ̃c defined by the relations:

cos2 ϕ̃c = f cos2 ϕc + f̄ sin2 ϕc , (3.13)

sin2 ϕ̃c = f̄ cos2 ϕc + f sin2 ϕc , (3.14)

so that

cos 2ϕ̃c = (f − f̄) cos 2ϕc . (3.15)

The relationship between the newly introduced parameter ϕ̃c and the original parameters

f and ϕc is pictorially illustrated in figure 2.

In terms of the new parameter ϕ̃c, the defining equations (3.5)–(3.8) for the

K
(jℓ)
IJ (f, ϕa, ϕb, ϕc) coefficients simply become

K
(jℓ−n )
11 (ϕa, ϕb, ϕ̃c) = cos2 ϕ̃c cos2 ϕb cos2 ϕa + sin2 ϕ̃c sin2 ϕb sin2 ϕa , (3.16)
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K
(jℓ−n )
12 (ϕa, ϕb, ϕ̃c) = cos2 ϕ̃c cos2 ϕb sin2 ϕa + sin2 ϕ̃c sin2 ϕb cos2 ϕa , (3.17)

K
(jℓ−n )
21 (ϕa, ϕb, ϕ̃c) = sin2 ϕ̃c cos2 ϕb cos2 ϕa + cos2 ϕ̃c sin2 ϕb sin2 ϕa , (3.18)

K
(jℓ−n )
22 (ϕa, ϕb, ϕ̃c) = sin2 ϕ̃c cos2 ϕb sin2 ϕa + cos2 ϕ̃c sin2 ϕb cos2 ϕa , (3.19)

and the remaining relations (3.9)–(3.12) are unchanged.

Using the relations (3.16)–(3.19), and the normalisation conditions (1.3) and (1.6)–

(1.8), it is easy to check that the K
(jℓ)
IJ coefficients obey the following normalisation condi-

tions

2
∑

I=1

2
∑

J=1

K
(jℓ±n )
IJ = 1 , (3.20)

2
∑

I=1

2
∑

J=1

K
(jℓ±

f
)

IJ = 1 . (3.21)

Given the unit normalisation (2.10)–(2.12) of our basis functions F (p)
S;IJ , eqs. (3.20)

and (3.21) readily imply that the {jℓ±n } and {jℓ±f } distributions (3.1) and (3.2) are auto-

matically half-unit normalised9

∫ ∞

0

(

dN

dm̂2
jℓ±n

)

S

dm̂2
jℓ±n

=
1

2
, (3.22)

∫ ∞

0





dN

dm̂2
jℓ±

f





S

dm̂2
jℓ±f

=
1

2
. (3.23)

The last step in deriving the experimentally observable invariant mass distributions is

to recall that the near and far lepton (ℓn and ℓf ) cannot be distinguished on an event by

event basis, therefore we need to form the distributions which are based on definite lepton

charge:

(

dN

dm2
jℓ+

)

S

≡
(

dN

dm2
jℓ+n

)

S

+





dN

dm2
jℓ+

f





S

, (3.24)

(

dN

dm2
jℓ−

)

S

≡
(

dN

dm2
jℓ−n

)

S

+





dN

dm2
jℓ−f





S

. (3.25)

When combining the jet-near lepton and the jet-far lepton distributions in

eqs. (3.24), (3.25), one has to be careful since until now each individual distribution was

written in terms of its own unit-normalised invariant mass variable m̂jℓn and m̂jℓf
. In gen-

eral, these two variables will be different, since the kinematic endpoints m̂max
jℓn

and m̂max
jℓf

,

9This can also be seen directly from the definitions (3.1) and (3.2) of the jℓ distributions and making

use of eqs. (2.42), (2.43) and (1.3).
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to which they are normalised, will not coincide. Once this problem is identified, it can be

handled in various ways, for example, by writing out the sums (3.24), (3.25) in terms of

the actual (i.e., not unit-normalised) invariant masses. In this paper, we prefer to keep the

m̂ notation, and write all of our distributions in terms of unit-normalised invariant mass

variables. To this end, we normalise any jet-lepton invariant mass mjℓ to the endpoint

mmax
jℓ ≡ max{mmax

jℓn
,mmax

jℓf
} (3.26)

of the combined jet-lepton distribution as follows:

m̂jℓ± ≡ mjℓ±

mmax
jℓ

. (3.27)

Introducing the ratios

rn ≡
mmax

jℓ

mmax
jℓn

, (3.28)

rf ≡
mmax

jℓ

mmax
jℓf

, (3.29)

we can now write the combined jet-lepton distributions for each lepton charge in terms of

the unit-normalised variable (3.27) as

(

dN

dm̂2
jℓ+

)

S

=
1

2

2
∑

I=1

2
∑

J=1

K
(jℓ+n )
IJ (ϕa, ϕb, ϕ̃c) r2

n F (jℓn)
S;IJ (r2

nm̂2
jℓ+;x, y, z)

+
1

2

2
∑

I=1

2
∑

J=1

K
(jℓ+

f
)

IJ (ϕa, ϕb, ϕ̃c) r2
f F

(jℓf )
S;IJ (r2

f m̂2
jℓ+;x, y, z) , (3.30)

(

dN

dm̂2
jℓ−

)

S

=
1

2

2
∑

I=1

2
∑

J=1

K
(jℓ−n )
IJ (ϕa, ϕb, ϕ̃c) r2

n F
(jℓn)
S;IJ (r2

nm̂2
jℓ−;x, y, z)

+
1

2

2
∑

I=1

2
∑

J=1

K
(jℓ−

f
)

IJ (ϕa, ϕb, ϕ̃c) r2
f F

(jℓf )
S;IJ (r2

fm̂2
jℓ− ;x, y, z) . (3.31)

Note that whenever the two endpoints m̂max
jℓn

and m̂max
jℓf

are different, one of the two ratios

rn and rf is guaranteed to exceed 1, so that there will be a range of masses for which the

corresponding argument (rnm̂jℓ or rf m̂jℓ) in the F (jℓ)
S;IJ functions would exceed 1 as well.

This is why it was necessary to extend the range of definition of our F (jℓn)
S;IJ and F (jℓf )

S;IJ

functions in appendix A to be 0 ≤ m̂ < ∞, although it seems trivial, since the functions

vanish identically for m̂ > 1.

As can be readily seen from eqs. (3.22) and (3.23), both of these observable distributions

are unit normalised

∫ ∞

0

(

dN

dm̂2
jℓ+

)

S

dm̂2
jℓ+ = 1 , (3.32)
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∫ ∞

0

(

dN

dm̂2
jℓ−

)

S

dm̂2
jℓ− = 1 , (3.33)

just like the observable dilepton distribution (2.7) (see eq. (2.44)).

This concludes the derivation of our first main result. It is worth recapitulating what

we managed to achieve so far. We obtained exact analytical expressions for the three

experimentally observable invariant mass distributions: dilepton (2.7), jet plus positive

lepton (3.30) and jet plus negative lepton (3.31). All three of our formulas are unit nor-

malised and can be readily rescaled for the actual observed number of events (which is the

same for each of the three distributions). Our formulas are written in terms of a set of

known functions F (p)
S;IJ which are explicitly defined in appendix A. The coefficients K

(p)
IJ

appearing in our formulas are defined in eqs. (3.16)–(3.19), (3.9)–(3.12) and (2.37)–(2.40),

and depend on only three model-dependent parameters ϕa, ϕb and ϕ̃c. Those parameters

are defined in eqs. (1.9) and (3.13), (3.14), and are a priori unknown, so that they must be

measured from the data.

The basic idea of our spin measurement method (whose main steps will be presented in

detail in the next section) will be to fit our formulas to the shapes of the measured invariant

mass distributions. Since there are 6 possible spin configurations, this fit will have to be

repeated 6 times — once for each value of S. Since we have only three parametric degrees

of freedom ϕa, ϕb and ϕ̃c, with which we are trying to fit three whole distributions, one

would expect that the fit will be successful only for the correct spin configuration S and for

the remaining 5 spin cases the fit will fail. Indeed we find that this expectation is generally

correct, and in section 5 we shall give explicit examples of how this procedure might work in

practice. However, we also find that there are two pairs of “twin” spin scenarios, discussed

in section 4.1, which are often completely indistinguishable, even as a matter of principle.

3.2 Invariant mass formulas in the {F (p)
S;α,F (p)

S;β,F (p)
S;γ ,F (p)

S;δ} basis

While the fitting exercise just described can in principle be performed with our results

written in terms of the F (p)
S;IJ basis functions from appendix A, we find that for the actual

practical application of our method, it is much more convenient to rewrite our results in

a different functional basis. We therefore introduce an alternative set of basis functions

{F (p)
S;α,F (p)

S;β,F (p)
S;γ ,F (p)

S;δ} which are nothing but linear combinations of those appearing in

our old set:

F (p)
S;α =

1

4

{

F (p)
S;11 −F (p)

S;12 + F (p)
S;21 −F (p)

S;22

}

, (3.34)

F (p)
S;β =

1

4

{

F (p)
S;11 + F (p)

S;12 −F (p)
S;21 −F (p)

S;22

}

, (3.35)

F (p)
S;γ =

1

4

{

F (p)
S;11 −F (p)

S;12 −F (p)
S;21 + F (p)

S;22

}

, (3.36)

F (p)
S;δ =

1

4

{

F (p)
S;11 + F (p)

S;12 + F (p)
S;21 + F (p)

S;22

}

, (3.37)
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for any p ∈ {ℓℓ, jℓn, jℓf}. Using the normalisation conditions (2.10)–(2.12), it is easy to

see that the newly defined functions F (p)
S;α, F (p)

S;β and F (p)
S;γ are zero-normalised

∫ ∞

0
F (p)

S;α(m̂2;x, y, z) dm̂2 = 0 , (3.38)

∫ ∞

0
F (p)

S;β(m̂2;x, y, z) dm̂2 = 0 , (3.39)

∫ ∞

0
F (p)

S;γ(m̂2;x, y, z) dm̂2 = 0 , (3.40)

while the function F (p)
S;δ is unit-normalised

∫ ∞

0
F (p)

S;δ(m̂
2;x, y, z) dm̂2 = 1 . (3.41)

The explicit form of the new basis functions {F (p)
S;α,F (p)

S;β,F (p)
S;γ ,F (p)

S;δ} can be easily obtained

by substituting the results from appendix A into the definitions (3.34)–(3.37). The result

is given in appendix B.

The advantage of the new set of basis functions becomes immediately apparent when

we rewrite our results for the different invariant mass distributions:
(

dN

dm̂2
ℓℓ

)

S

≡ L+−
S = F (ℓℓ)

S;δ (m̂2
ℓℓ;x, y, z) + α(ϕb, ϕa)F (ℓℓ)

S;α (m̂2
ℓℓ;x, y, z) , (3.42)

(

dN

dm̂2
jℓ±n

)

S

=
1

2

{

F (jℓn)
S;δ (m̂2

jℓn
;x, y, z) ∓ β(ϕ̃c, ϕb)F (jℓn)

S;β (m̂2
jℓn

;x, y, z)

}

, (3.43)





dN

dm̂2
jℓ±

f





S

=
1

2

{

F (jℓf )
S;δ (m̂2

jℓf
;x, y, z) + α(ϕb, ϕa)F (jℓf )

S;α (m̂2
jℓf

;x, y, z) (3.44)

±β(ϕ̃c, ϕb)F (jℓf )
S;β (m̂2

jℓf
;x, y, z) ± γ(ϕa, ϕ̃c)F (jℓf )

S;γ (m̂2
jℓf

;x, y, z)

}

,

where α, β and γ are constant coefficients related to the chirality parameters (1.9) as

follows

α(ϕb, ϕa) ≡ cos 2ϕb cos 2ϕa , (3.45)

β(ϕ̃c, ϕb) ≡ cos 2ϕ̃c cos 2ϕb , (3.46)

γ(ϕa, ϕ̃c) ≡ cos 2ϕa cos 2ϕ̃c . (3.47)

Each one of the α, β and γ parameters can take values in the interval [−1, 1]. However,

α, β and γ are not completely unrelated. Given their definitions (3.45)–(3.47), it is easy

to see that they must satisfy certain relations among themselves, and those are listed in

appendix C.

Using the normalisation conditions (3.38)–(3.41), one can easily show that all distri-

butions (3.42)–(3.42) are properly normalised as in eqs. (2.44), (3.22), (3.23). eqs. (3.42)–

(3.47) represent our main theoretical result. In the remainder of this section we shall
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discuss and interpret those equations. In the subsequent sections we shall illustrate how

eqs. (3.42)–(3.47) can be used for measurements of the spins, couplings and mixing angles.

There are several desirable features of the {F (p)
S;α,F (p)

S;β,F (p)
S;γ ,F (p)

S;δ} basis used to write

down eqs. (3.42)–(3.42). First, consider the F (p)
S;δ terms which appear without any para-

metric coefficients. In most cases for S and p, the function F (p)
S;δ simply gives the invariant

mass distribution as predicted by pure phase space, i.e. where any spin correlations are

ignored. This is true whenever there are only scalars and/or fermions among the inter-

mediate particles appearing between the SM fermion pair whose invariant mass is being

calculated. However, if a heavy vector boson appears among the intermediate heavy parti-

cles, the F (p)
S;δ function always deviates from pure phase space. In fact this deviation cannot

be compensated by a judicious choice of the α, β and γ parameters. Therefore, one of our

general conclusions will be that a heavy vector boson always leads to deviations from pure

phase space and conversely, whenever a pure phase space distribution is observed, a heavy

vector boson can be ruled out.

Another nice feature of eqs. (3.42)–(3.42) is that the three parametric degrees of free-

dom are now explicit in terms of the coefficients α, β and γ. Even more importantly, it

is immediately apparent which particular combination of the model-dependent parameters

ϕa, ϕb and ϕ̃c (i.e. which combination of couplings and mixing angles) can be measured

from any given distribution. For example, the observable dilepton invariant mass distribu-

tion L+−
S given in eq. (3.42) only depends on α, but does not depend on β and γ. Since

the dilepton distribution is experimentally observable, this would allow a direct measure-

ment of the α parameter from the dilepton data alone, by fitting to the shape predicted

by (3.42). Note that α(ϕb, ϕa) depends only on the chirality parameters ϕb and ϕa entering

the corresponding vertices for the near (ℓn) and far (ℓf ) leptons. The fact that α (and as

a consequence, the dilepton invariant mass shape (3.42)) does not depend on the chirality

parameter ϕ̃c associated with the quark vertex, should be intuitively obvious — the two

leptons are not affected by the preceding events higher up in the cascade decay chain (see

figure 1). The resulting measurement of α can be immediately interpreted in terms of

the underlying chirality parameters ϕa and ϕb, as illustrated in figure 3, leading to one

constraint among ϕa and ϕb. Clearly, the α(ϕb, ϕa) measurement alone is not sufficient

to pin down the precise values of ϕa and ϕb. However, once it is supplemented with the

additional measurements of β(ϕ̃c, ϕb) and γ(ϕa, ϕ̃c) as explained below, in principle all

three parameters ϕa, ϕb and ϕ̃c will be completely determined.

Similarly, we can see that the jet-near lepton invariant mass distribution (3.43) only

depends on the parameter β, and does not contain the parameters α or γ. Again notice

from figure 1 that β(ϕ̃c, ϕb) in turn depends only on the chirality parameters ϕ̃c and ϕb

associated with the corresponding vertices for the quark (q) and the near lepton (ℓn). This

is also intuitively clear — the jet and near lepton should not be affected by what happens

later down the decay chain. A measurement of β therefore can be immediately interpreted

in terms of the underlying chirality parameters ϕ̃c and ϕb, and the relationship is exactly

the same as the one exhibited in figure 3 between α(ϕb, ϕa) and its arguments.

However, as we already explained in section 3.1, the {jℓn} invariant mass distribu-
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Figure 3: The parameter α(ϕb, ϕa) defined in (3.45) as a function of cosϕa and cosϕb.

tion (3.43) is not separately observable, and instead has to be combined with the {jℓf}
distribution given in (3.42) to form the experimentally observable {jℓ+} and {jℓ−} distri-

butions. We see from eq. (3.42) that the {jℓf} distribution depends on all three parameters

α, β and γ, which is again easy to understand intuitively — the intermediate lepton ℓn

does affect its neighbors on both sides (q and ℓf ). Given the expressions (3.43) and (3.42),

we can immediately combine them using the same procedure as in eqs. (3.30) and (3.31):
(

dN

dm̂2
jℓ±

)

S

=
1

2

{

r2
n F

(jℓn)
S;δ (r2

nm̂2
jℓ±;x, y, z) + r2

f F
(jℓf )
S;δ (r2

f m̂2
jℓ±;x, y, z)

+ αr2
f F

(jℓf )
S;α (r2

f m̂2
jℓ±;x, y, z) ± γ r2

f F
(jℓf )
S;γ (r2

f m̂2
jℓ±;x, y, z)

±β r2
f F

(jℓf )
S;β (r2

f m̂2
jℓ±;x, y, z) ∓ β r2

n F
(jℓn)
S;β (r2

nm̂2
jℓ±;x, y, z)

}

. (3.48)

Notice that the same β and γ terms in (3.48) appear with opposite signs in the {jℓ+} and

the {jℓ−} distribution. This suggests that instead of the two individual distributions (3.48)

we should be considering their sum

S+−
S (m̂2

jℓ;x, y, z, α) ≡
(

dN

dm̂2
jℓ+

)

S

+

(

dN

dm̂2
jℓ−

)

S

(3.49)

= r2
n F

(jℓn)
S;δ (r2

nm̂2
jℓ;x, y, z) + r2

f F
(jℓf )
S;δ (r2

f m̂2
jℓ;x, y, z) + α r2

f F
(jℓf )
S;α (r2

f m̂2
jℓ;x, y, z)

and their difference

D+−
S (m̂2

jℓ;x, y, z, β, γ) ≡
(

dN

dm̂2
jℓ+

)

S

−
(

dN

dm̂2
jℓ−

)

S

(3.50)
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= γ r2
f F

(jℓf )
S;γ (r2

f m̂2
jℓ;x, y, z) + β r2

f F
(jℓf )
S;β (r2

f m̂2
jℓ;x, y, z) − β r2

n F
(jℓn)
S;β (r2

nm̂2
jℓ;x, y, z) .

The normalisation conditions for the newly defined quantities S+−
S and D+−

S are

∫ ∞

0
S+−

S (m̂2
jℓ;x, y, z, α) dm̂2

jℓ = 2 , (3.51)

∫ ∞

0
D+−

S (m̂2
jℓ;x, y, z, β, γ) dm̂2

jℓ = 0 . (3.52)

eq. (3.49) reveals one of our most important results — that the sum of the two jet-lepton

distributions depends on a single model-dependent parameter, and more importantly, this

is the same parameter (α) which also determines the dilepton invariant mass distribution.

Therefore, once α is measured from the relatively clean dilepton data, the experimentally

observable S+−
S distribution is completely specified! This is a very important result, and as

we shall see later in our examples, the dilepton (L+−) and S+−
S distributions by themselves

can often discriminate among the various spin alternatives.

Of course, the D+−
S distribution is also observable, and it can be used as an additional

cross-check of the results obtained with the two α-dependent distributions. The importance

of the D+−
S distribution is that it can provide a measurement of the other two model-

dependent parameters β and γ. Note, however, that the γ parameter can be measured

only if S = 4, 5, 6, since for the remaining three cases we have

F (jℓn)
S;γ = F (jℓf )

S;γ = 0 for S = 1, 2, 3,

and D+−
S becomes γ-independent. Similarly, the parameter β can only be determined for

S = 1, 4, 5, 6 since for the remaining two cases S = 2, 3

F (jℓn)
S;β = F (jℓf )

S;β = 0 for S = 2, 3,

and D+−
S becomes β-independent as well.

Now we are in a position to contrast our approach to previous spin discrimination

studies based on the lepton charge asymmetry [19]. The latter is simply the ratio

A+−
S (m̂2

jℓ;x, y, z, α, β, γ) ≡
D+−

S (m̂2
jℓ;x, y, z, β, γ)

S+−
S (m̂2

jℓ;x, y, z, α)
. (3.53)

We can immediately see that, in general, A+−
S is a much more model-dependent quantity

than either S+−
S or D+−

S . Indeed, as we just discussed, S+−
S depends on a single model-

dependent parameter (α), D+−
S depends on two other model-dependent parameters (β

and γ), while, as evidenced by eq. (3.53), A+−
S depends on all three of these (α, β and

γ). Second, the lepton charge asymmetry is not normalised to any particular constant

numerical value, unlike the S+−
S and D+−

S distributions (see eqs. (3.51), (3.52)). But most

importantly, A+−
S is a single distribution, derived from S+−

S and D+−
S , therefore it is bound

to contain less information than the two separate distributions S+−
S and D+−

S . Our explicit

examples in section 5 will show that, as might be expected, the useful information contained

in A+−
S is approximately the same as the information contained in D+−

S . Therefore, by
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considering in addition the S+−
S distribution, as we are suggesting here, one is recovering

the information which was lost when forming the ratio (3.53). This information gain is

most striking for the case of a pp̄ collider like the Tevatron, as discussed in detail below in

section 4.2.

4. The method

The starting point in our analysis is the set of analytical formulas (3.42), (3.49), (3.50)

derived in the previous section for the three experimentally observable invariant mass

distributions: dilepton L+−
S , and sum (S+−

S ) and difference (D+−
S ) of the {jℓ+} and the

{jℓ−} distributions:

L+−
S (m̂2

ℓℓ;x, y, z, α) ≡
(

dN

dm̂2
ℓℓ

)

S

= F (ℓℓ)
S;δ (m̂2

ℓℓ;x, y, z) + αF (ℓℓ)
S;α (m̂2

ℓℓ;x, y, z) , (4.1)

S+−
S (m̂2

jℓ;x, y, z, α) ≡
(

dN

dm̂2
jℓ+

)

S

+

(

dN

dm̂2
jℓ−

)

S

(4.2)

= r2
n F

(jℓn)
S;δ (r2

nm̂2
jℓ;x, y, z) + r2

f F
(jℓf )
S;δ (r2

f m̂2
jℓ;x, y, z) + α r2

f F
(jℓf )
S;α (r2

fm̂2
jℓ;x, y, z) ,

D+−
S (m̂2

jℓ;x, y, z, β, γ) ≡
(

dN

dm̂2
jℓ+

)

S

−
(

dN

dm̂2
jℓ−

)

S

(4.3)

= γ r2
f F

(jℓf )
S;γ (r2

f m̂2
jℓ;x, y, z) + β r2

f F
(jℓf )
S;β (r2

f m̂2
jℓ;x, y, z) − β r2

n F
(jℓn)
S;β (r2

nm̂2
jℓ;x, y, z) .

The functions F (p)
S;α, F (p)

S;β, F (p)
S;γ and F (p)

S;δ are given in appendix B, while the constant

model-dependent parameters α, β and γ were defined in eqs. (3.45)–(3.47):

α(ϕb, ϕa) = cos 2ϕb cos 2ϕa , (4.4)

β(ϕ̃c, ϕb) = cos 2ϕ̃c cos 2ϕb = (f − f̄) cos 2ϕc cos 2ϕb , (4.5)

γ(ϕa, ϕ̃c) = cos 2ϕa cos 2ϕ̃c = (f − f̄) cos 2ϕa cos 2ϕc , (4.6)

where in the last two equations we have used the relation (3.15). The angles ϕa, ϕb and ϕc

were defined in eq. (1.9) and parameterise the relative chirality of the corresponding inter-

action vertex in figure 1, while the particle-antiparticle fractions f and f̄ were introduced

in section 1.2 and satisfy eq. (1.3). Given the data for the three distributions (4.1)–(4.3),

one then tries to fit for the unknown model-dependent coefficients α, β and γ, considering

each of the six different spin possibilities S one at a time. The result will be 6 different sets

of “best fit” values for these coefficients, {αS , βS , γS}, S = {1, . . . , 6}, and an accompany-

ing measure for the goodness of fit in each case. The fits can be done simultaneously for

all three parameters, or alternatively, one can first determine α from the relatively cleaner

L+−
S sample, and subsequently use this fitted value of αS in eqs. (4.2), (4.3). The goodness

of fit for each S will indicate whether this particular spin configuration is consistent with

the data or not, and, given the expected experimental statistical and systematic errors, one

can also readily assign confidence level probabilities to those statements. As we have been
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emphasizing throughout, this procedure is completely model-independent, and in fact pro-

duces an independent measurement of the model-dependent parameters α, β and γ, which

can then be translated into a measurement of the underlying theoretical model parameters

ϕa, ϕb, ϕc and f . For example, when all three parameters α, β and γ are measured and

found to be non-zero, one can invert eqs. (4.4)–(4.6) and solve for ϕa, ϕb and ϕc up to a

two-fold ambiguity:

cos 2ϕa = ± 1

β

√

αβγ , (4.7)

cos 2ϕb = ±1

γ

√

αβγ , (4.8)

cos 2ϕc = ± 1

f − f̄

1

α

√

αβγ , (4.9)

where in all three equations one should take either the “+” or the “−” sign on the right-

hand side. The origin of this two-fold ambiguity is easy to understand. Observe that

the defining equations (4.4)–(4.6) for α, β and γ are invariant under the simultaneous

transformations

ϕa → π

2
− ϕa , ϕb →

π

2
− ϕb , ϕc →

π

2
− ϕc , (4.10)

whose effect is precisely to flip the signs in the right-hand sides of eqs. (4.7)–(4.9). Given the

defining relation (1.9), the transformations (4.10) are equivalent to the chirality exchange

|aL| ↔ |aR| , |bL| ↔ |bR| , |cL| ↔ |cR| . (4.11)

The physical meaning of eq. (4.11) is clear — we can only measure the chirality of the three

different vertices in figure 1 only relative to each other. When choosing the plus signs in

eqs. (4.7)–(4.9), we get a solution for the couplings with one particular set of chiralities,

while choosing the minus sign in eqs. (4.7)–(4.9) yields a solution where the couplings

have just the opposite chiralities. Since there is nothing to provide a reference point for

the chiralities, it is impossible to remove this L ↔ R ambiguity without making some

model assumptions, or without considering additional independent measurements. Using

the solutions (4.7)–(4.9) and the definitions (1.9) we can write down the general solution

for the couplings in terms of the measured parameters α, β and γ, as

|aL| =
1√
2

(

1 ± 1

β

√

αβγ

)
1
2

, (4.12)

|aR| =
1√
2

(

1 ∓ 1

β

√

αβγ

)
1
2

, (4.13)

|bL| =
1√
2

(

1 ± 1

γ

√

αβγ

) 1
2

, (4.14)

|bR| =
1√
2

(

1 ∓ 1

γ

√

αβγ

)
1
2

, (4.15)

|cL| =
1√
2

(

1 ± 1

f − f̄

1

α

√

αβγ

) 1
2

, (4.16)
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|cR| =
1√
2

(

1 ∓ 1

f − f̄

1

α

√

αβγ

) 1
2

, (4.17)

where the appearance of the ± sign is due to the two-fold ambiguity just discussed. Here

the two solutions are obtained by choosing the upper or lower sign in each equation,

correspondingly. It is worth making a few comments regarding eqs. (4.12)–(4.17), which

represent our second main result.

Note that while in general α, β and γ can have either sign, eqs. (3.45)–(3.47) imply

that the product αβγ is always non-negative. Furthermore, from eqs. (3.45)–(3.47) it also

follows that |αβ| ≤ |γ|, |βγ| ≤ |α| and |γα| ≤ |β|. Therefore all square roots in eqs. (4.12)–

(4.17) are well behaved and never yield any imaginary solutions. It is interesting to note

the dependence on the particle-antiparticle fraction f discussed in section 1.2. We see

that for any given measurement of α, β and γ, the effective couplings |aL|, |aR|, |bL| and

|bR| associated with the particle A and particle B vertices of figure 1 can be uniquely

determined, up to the two-fold L ↔ R ambiguity (4.11). In other words, the particle-

antiparticle ambiguity T2 discussed in the Introduction only affects the determination of

the |cL| and |cR| couplings, as seen from eqs. (4.16)–(4.17). The values of the couplings |cL|
and |cR| are not uniquely determined, and instead are parameterised as a function of f .

Although we do not know the exact value of f , consistency of eqs. (4.16)–(4.17) restricts

the allowed values of f to be in the range

0 ≤ f ≤ 1

2

(

1 −
√

βγ

α

)

or
1

2

(

1 +

√

βγ

α

)

≤ f ≤ 1 . (4.18)

The fact that the allowed range for f splits into two separate intervals could already be

seen in figure 2: notice that there are two disjoint branches in the (cos ϕc, f) plane which

are consistent with a given fixed value of ϕ̃c, i.e. with a given set of measured α, β and

γ. At a pp collider like the LHC, in general we expect f > 1
2 , so we should select the

higher f range in eq. (4.18), while the lower f range in eq. (4.18) would be relevant for a

hypothetical p̄p̄ collider (“anti-LHC”):

LHC (pp) :
1

2

(

1 +

√

βγ

α

)

≤ f ≤ 1 , (4.19)

anti − LHC (p̄p̄) : 0 ≤ f ≤ 1

2

(

1 −
√

βγ

α

)

. (4.20)

While eq. (4.19) is not a real measurement of the value of f at the LHC, it nevertheless

contains very important information. For example, if the measured values of α, β and

γ happen to be such that |βγ| ≈ |α|, then f becomes very severely constrained, and the

restriction (4.19) by itself is sufficient to yield a measurement of the value of f : f ≈ 1.

In the following section 5 we shall give numerous examples of how our method might

work in practice. But before we conclude this section we shall anticipate some general

results which can be gleaned from our analytical formulas (4.1)–(4.3). In particular, in

section 4.1 we shall show that the two pairs of spin configurations FSFS and FSFV, as well
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as FVFS and FVFV, very often give identical results for the invariant mass distributions,

and cannot be differentiated without additional model assumptions. Then in section 4.2 we

shall show that our method is also applicable at the Tevatron, where in contrast the lepton

charge asymmetry A+−
S is identically zero for all spin configurations S and thus contains

no useful information.

4.1 The twin spin scenarios FSFS/FSFV and FVFS/FVFV

Consulting the definitions of the functions in appendix B, one can see that

F (p)
3;α = F (p)

2;α

1 − 2z

1 + 2z
, (4.21)

F (p)
3;β = F (p)

2;β = 0 , (4.22)

F (p)
3;γ = F (p)

2;γ = 0 , (4.23)

F (p)
3;δ = F (p)

2;δ (4.24)

for any p ∈ {ℓℓ, jℓn, jℓf}. Therefore the relation

α2 = α3
1 − 2z

1 + 2z
(4.25)

is sufficient to guarantee that all invariant mass distributions (4.1)–(4.3) are exactly the

same in the case of S = 2 (FSFS) and S = 3 (FSFV):

L+−
2

(

m̂2
ℓℓ;x, y, z, α3

1 − 2z

1 + 2z

)

= L+−
3

(

m̂2
ℓℓ;x, y, z, α3

)

, (4.26)

S+−
2

(

m̂2
jℓ;x, y, z, α3

1 − 2z

1 + 2z

)

= S+−
3

(

m̂2
jℓ;x, y, z, α3

)

, (4.27)

D+−
2

(

m̂2
jℓ;x, y, z, β2, γ2

)

= D+−
3

(

m̂2
jℓ;x, y, z, β3, γ3

)

. (4.28)

Note that this exact duplication occurs irrespective of the values of the other two model-

dependent parameters β and γ. In other words, relations (4.26)–(4.28) hold identically for

any values of the five parameters α3, β3, γ3, β2 and γ2. As long as eq. (4.25) is true, the

FSFS and FSFV models will yield identical invariant mass distributions for L+−, S+− and

D+−. This observation has very important implications for the eventual outcome of the

spin measurement, if the data happens to come from one of those models, since the exact

duplication (4.26)–(4.28) then threatens to jeopardize our ability to discriminate among

them. However, as we shall now see, whether discrimination is possible or not, depends on

the actual values of α and z. Recall that the α parameter is defined in the range [−1, 1],

while z is defined in (0, 1), and therefore so is the ratio |1−2z
1+2z

|. Then, for any given value of

α3 ∈ [−1, 1], α2 as given by (4.25) falls into its definition window, and an exact duplication

takes place. However, the reverse is not true: not every value of α2 would lead to a valid

solution for α3 according to eq. (4.25), since for large enough values of |α2|, the value of

|α3| would exceed 1, which is not allowed.
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Our conclusion therefore is that the issue of confusing the two models FSFS and FSFV

depends on whether the data comes from FSFV and we are trying to fit it with FSFS, or

whether the data comes from FSFS and we are trying to fit it with FSFV. In the former

case the two models will always be confused with each other, while in the latter case, the

confusion arises only if α2 happens to satisfy

|α2| ≤
∣

∣

∣

∣

1 − 2z

1 + 2z

∣

∣

∣

∣

. (4.29)

A close inspection of appendix B also reveals a similar problem with the FVFS and

FVFV spin configurations (S = 4 and S = 5). In this case, we notice the following relations

F (p)
5;α = F (p)

4;α

1 − 2z

1 + 2z
, (4.30)

F (p)
5;β = F (p)

4;β , (4.31)

F (p)
5;γ = F (p)

4;γ

1 − 2z

1 + 2z
, (4.32)

F (p)
5;δ = F (p)

4;δ (4.33)

for any p ∈ {ℓℓ, jℓn, jℓf}. Therefore, the relations

α4 = α5
1 − 2z

1 + 2z
, (4.34)

β4 = β5 , (4.35)

γ4 = γ5
1 − 2z

1 + 2z
(4.36)

would once again guarantee that all invariant mass distributions (4.1)–(4.3) are exactly

the same in these two cases:

L+−
4

(

m̂2
ℓℓ;x, y, z, α5

1 − 2z

1 + 2z

)

= L+−
5

(

m̂2
ℓℓ;x, y, z, α5

)

, (4.37)

S+−
4

(

m̂2
jℓ;x, y, z, α5

1 − 2z

1 + 2z

)

= S+−
5

(

m̂2
jℓ;x, y, z, α5

)

, (4.38)

D+−
4

(

m̂2
jℓ;x, y, z, β5, γ5

1 − 2z

1 + 2z

)

= D+−
5

(

m̂2
jℓ;x, y, z, β5, γ5

)

. (4.39)

Following the same logic as before, we conclude that whenever the data comes from FVFV,

the model will always be confused with FVFS. However, if the data comes from FVFS, the

confusion arises only if α4 and γ4 happen to satisfy

|α4| ≤
∣

∣

∣

∣

1 − 2z

1 + 2z

∣

∣

∣

∣

, (4.40)

|γ4| ≤
∣

∣

∣

∣

1 − 2z

1 + 2z

∣

∣

∣

∣

. (4.41)

In addition to these two equations, the values of α4, β4 and γ4 must also satisfy the domain

constraints (C.2)–(C.5) from appendix C.
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4.2 Spin determination at the Tevatron

At a pp̄ collider such as the Tevatron, the symmetry of the initial state implies

f = f̄ =
1

2
. (4.42)

On the surface, it may appear that this constraint eliminates only one out of the four model-

dependent degrees of freedom (f , ϕa, ϕb and ϕc) that we originally started with. However,

as can be deduced from eqs. (3.13), (3.14) and also seen from figure 2, the constraint (4.42)

in fact completely fixes the ϕ̃c parameter

ϕ̃c =
π

4
(4.43)

and as a result both β and γ vanish identically:

β = γ = 0 . (4.44)

In that case from eq. (4.3) we have

D+−
S ≡ 0 (4.45)

and a similar result holds for the lepton charge asymmetry (3.53)

A+−
S ≡ 0 . (4.46)

We see that at the Tevatron we do not learn anything from either D+−
S or from the lepton

charge asymmetry A+−
S . However, our results for L+−

S and S+−
S still hold, and contain

non-trivial spin information, so that the spin analysis following our method can still be

performed. In fact, our method can already be tested in the top quark semileptonic and

dilepton samples at the Tevatron by looking at the invariant mass distribution of the b-jet

and the lepton [54]. Indeed, our decay chain from figure 1 can be applied to top quark

decays, for example by identifying C = t, B = W+ and A = νℓ, and reinterpreting ℓn as the

b-jet and ℓf as the lepton coming from W decay. In that case, the mbℓ distribution should

be described by our formula (3.42) for L+−
6 . Alternatively, one can identify the particles

in figure 1 as D = t, C = W+, B = νℓ, q = b and ℓn = ℓ. In this case, the mbℓ distribution

will be described by our formula (3.43) applied for S = 4 or S = 5. In any case, one should

observe the characteristic m̂4 term in the invariant mass distribution (see the definition of

F (ℓℓ)
6;δ in table 8 or the definition of F (jℓ)

4;δ and F (jℓ)
5;δ in table 9), which would signal that the

W is spin 1 and therefore the top quark and the neutrino are both spin 1/2.

5. Determination of spins and couplings: examples

In this section we shall give an explicit demonstration how to apply our method in practice

at the LHC. We shall work out in detail 6 different examples, namely, we shall assume in

turn that the observed data is coming from each one of the six spin configurations from

table 1. Then we shall ask the question whether this data is consistent with one of the

remaining 5 alternatives.
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Since we do not yet have real data available, we will have to use simulated data. We

shall therefore have to pick some values for the mass spectrum, couplings and particle-

antiparticle fraction, namely we shall have to fix the values of x, y, z, ϕa, ϕb, ϕc, and f . In

order to allow comparisons to previous studies in the literature, we shall use the parameters

of the SPS1a study point in supersymmetry. However, as advertised, we shall still perform

the spin measurements in a model-independent way, i.e. as soon as we simulate our “data”,

we shall immediately “forget” how it was generated, and shall treat it as coming from a

“black box” such as the actual collider experiment.

For the SPS1a mass spectrum we take the values used in refs. [20, 21]

mA = 96 GeV, mB = 143 GeV, mC = 177 GeV, mD = 537 GeV , (5.1)

which translate into

x = 0.109, y = 0.653, z = 0.451 . (5.2)

SPS1a is characterised by the following approximate values for the coupling constants

aL = 0, aR = 1, bL = 0, bR = 1, cL = 1, cR = 0, (5.3)

and particle-antiparticle fractions f and f̄ at the LHC

f = 0.7, f̄ = 0.3 . (5.4)

The spectrum (5.1) results in the following kinematic endpoints10

mmax
ℓℓ = mD

√

x(1 − y)(1 − z) = 77.31 GeV , (5.5)

mmax
jℓn

= mD

√

(1 − x)(1 − y) = 298.77 GeV , (5.6)

mmax
jℓf

= mD

√

(1 − x)(1 − z) = 375.76 GeV , (5.7)

mmax
jℓℓ = mD

√

(1 − x)(1 − yz) = 425.94 GeV . (5.8)

Since we assume that the spectrum has been measured, the values of these endpoints are

also known in advance of the spin measurement. We are therefore still allowed to write the

measured invariant mass distributions (4.1)–(4.3) in terms of the dimensionless invariant

masses (2.2).

Substituting the SPS1a parameter choice (5.3) and (5.4) into the definitions (3.45)–

(3.47) yields the following values of our model-dependent parameters α, β and γ

α = 1, β = −0.4, γ = −0.4 . (5.9)

Note that α = 1 necessarily implies β = γ, in accordance with eqs. (3.45)–(3.47).

eq. (5.9) defines the input values of the model-dependent parameters used in our study.

We should reiterate that there is nothing special about the SPS1a parameter choice, and

we could have used any other study point instead.

10The kinematic endpoint mmax
jℓℓ is only needed for the extraction of the mass spectrum, while the actual

{jℓ+ℓ−} distribution is not needed for our study.
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Using our method, we shall now perform 6 different exercises of spin determination.

For each exercise, we shall take the input “data” to be given in turn by one of the six

models from table 1. We shall then try to fit the “data” to each of the remaining 5 spin

configurations, using our general analytical expressions (4.1)–(4.3) with floating, a priori

unknown, parameters α, β and γ. Although the fit can be done simultaneously for all three

parameters α, β and γ, we shall perform it sequentially, using the fact that the L+−
S and

S+−
S distributions depend only on α and not on β and γ. Therefore, we shall start with the

cleaner L+−
S sample and first determine the value of α, which we shall then use to compare

the thus predicted S+−
S distribution to the “data”. Quite often, it will be already at this

stage that one could rule out all but the correct spin configuration. We shall encounter

such examples below as well. Sometimes, however, there may still be several alternatives

left, in which case we need to also consider the D+− distribution, where we fit for the

values of the coefficients β and γ. Details of our fitting procedure and examples of some

fits are presented in appendix C. Our results are summarised in figures 4, 5 and 6, which

show our results for the L+−
S , S+−

S and D+−
S distributions, correspondingly. In each of

figures 4, 5 and 6 the solid (magenta) lines in each panel represent the input invariant mass

distribution (L+−
S , S+−

S or D+−
S , as appropriate) from our simulated “data”, for each of

the 6 spin configurations: a) SFSF; b) FSFS; c) FSFV; d) FVFS; e) FVFV; f) SFVF. The

other (dotted or dashed) lines are our best fits to this data, for each of the remaining 5

spin configurations from table 1. The color code is the following. If the trial model fits the

input data perfectly, we use a dashed (green) line. If the fit fails to match the input data,

we use (color-coded) dotted lines. The best fit values of α, β and γ for each case are also

shown, except for those cases (labelled by “NA”) where they are left undetermined by the

fit. Dotted lines of the same color imply that they are identical to each other, yet different

from the input “data”.

5.1 SFSF example (S = 1)

For the SPS1a parameters (5.2)–(5.4) (or alternatively, (5.9)), eqs. (4.1)–(4.3) predict the

following observable invariant mass distributions for the SFSF model:

L+−
1 = 1 , (5.10)

S+−
1 =















2.810 m̂2
jℓ ≤ 0.632

1.228 0.632 ≤ m̂2
jℓ ≤ 0.653

−2.880 log m̂2
jℓ 0.653 ≤ m̂2

jℓ ,

(5.11)

D+−
1 =















−0.668 + 2.002 m̂2
jℓ m̂2

jℓ ≤ 0.632

−0.035 0.632 ≤ m̂2
jℓ ≤ 0.653

6.633 − 6.633 m̂2
jℓ + 5.481 log m̂2

jℓ 0.653 ≤ m̂2
jℓ .

(5.12)

These distributions are shown with solid (magenta) lines in figures 4(a), 5(a) and 6(a),

respectively. Following our procedure described above, we first try to fit the dilepton data

in figure 4(a). Due to the presence of an intermediate scalar particle B, the L+− distribution
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Figure 4: Dilepton invariant mass distributions (L+−

S ). The solid (magenta) line in each plot

represents the input dilepton distribution from our simulated “data”, for each of the 6 spin config-

urations: a) SFSF; b) FSFS; c) FSFV; d) FVFS; e) FVFV; f) SFVF. The other (dotted or dashed)

lines are our best fits to this data, for each of the remaining 5 spin configurations from table 1. The

color code is the following. If the trial model fits the input data perfectly, we use a dashed (green)

line. If the fit fails to match the input data, we use (color-coded) dotted lines. The best fit value

of α for each case is also shown, except for cases where it is left undetermined (NA).
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Figure 5: The same as in figure 4 but for S+− instead of L+−.

for the SFSF chain (S=1), is completely flat. However, that does not necessarily mean that

the spin of particle B is determined to be zero. In fact, as seen from figure 4(a), all other

spin configurations except for S = 6 (SFVF) can also fit this flat distribution, simply

by choosing a vanishing α parameter. Even the case of S = 6 (SFVF), whose “best fit”

prediction is different from the input data, may still be difficult to discriminate in practice,
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Figure 6: The same as in figure 4 but for D+− instead of L+−.

once we factor in the finite statistics, detector resolution and combinatorial backgrounds.

The bad news, therefore, is that we cannot immediately determine the spins from the L+−

distribution alone, but the good news is that, as anticipated, we got a measurement of the

α parameter, which represents some combination of heavy particle couplings and mixing

angles.

– 38 –



J
H
E
P
1
0
(
2
0
0
8
)
0
8
1

At this point it is worth comparing our figure 4(a) to figure 2a in ref. [21], where a very

similar exercise was performed.11 The two results are quite different, for example we find

that 4 out of the 5 “wrong” models can perfectly fit the dilepton “data”, while in ref. [21]

all 6 models give distinct dilepton shapes. Of course, neither of the two results is wrong,

and the difference simply arises due to our different philosophy. In ref. [21] the parameters

α, β and γ (in our notation) were all kept fixed to the SPS1a values (5.9), while here we are

allowing them to float, since they would not have been measured in advance independently.

As a result, we tend to get much more similar distributions, indicating that once we factor

in the experimental realism, the actual spin measurements might be even more challenging

than previously anticipated.

Having extracted all the relevant information out of the L+− distribution, we now move

on to studying the S+− distribution. As we already explained in section 3.2, the advantage

of considering S+− as opposed to each one of the individual distributions {jℓ+} and {jℓ−}
is that S+− only depends on exactly the same parameter α as the dilepton distribution

L+− (see eq. (4.2)). Since we have just measured α by fitting to the L+− data, at this

stage there are no free parameters left in the S+− distribution, and it is uniquely predicted

for each of the 5 “wrong” spin scenarios. In figure 5(a) we plot the resulting predictions

for the six spin models, using in each case the corresponding value of α, which had been

measured in the previous step from the L+− distribution. We see that the S+− distribution

can now further differentiate between different spin cases, e.g. it can rule out (in principle)

the S = 4 and S = 5 (FVFS and FVFV) models. Interestingly, now S = 6 (SFVF) gives

a perfect match, but fortunately, it has already been eliminated from consideration by the

analysis of the L+− data at the previous step. Unfortunately, the “wrong” spin scenarios

S = 2 and S = 3 (FSFS and FSFV) once again give a perfect match to the data, so that

even after considering both L+− and S+−, we are still left with 3 distinct possibilities for

the spins of the heavy partners. As we shall see later from the other 5 exercises, the SFSF

input “data” is somewhat of an unlucky case, since we end up with several spin models

which perfectly fit both the L+− and S+− data. More often than not, L+− and S+− by

themselves should be sufficient to narrow down the spin configuration alternatives to a

single one (or at most two, due to the “twin” spin scenarios discussed in section 4.1).

We are therefore forced to consider our third piece of data, the D+− distribution (4.3).

This distribution does not depend on the previously fitted parameter α, and instead needs

to be fitted with the other two model-dependent parameters, β and γ. Even though D+−

itself does not explicitly depend on α, the fit is nevertheless impacted by the measured

value of α, as the latter determines the allowed range of values for β and γ (see appendix C

for details). The results from our fitting exercise to the D+− SFSF “data” are shown in

figure 6(a). We see that D+− can now eliminate the remaining two “wrong” spin scenarios

S = 2 and S = 3 (FSFS and FSFV) and as a result of all three types of fits, we are able to

determine uniquely the spin chain as being S = 1 (SFSF). In addition, we were also able to

obtain a measurement of the parameter β, which carries information about the couplings

11Figure 2a of ref. [21] is simply the collection of all six solid (magenta) lines in our figure 4(a)-(f), i.e.

our input “data” for the six different spin configurations, using the same fixed SPS1a values (5.2)–(5.4) for

the model dependent parameters.
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and mixing angles of the heavy partners D, C and B. Unfortunately, the parameters α and

γ are not experimentally accessible in this case (S = 1), since their corresponding basis

functions F (p)
1;α and F (p)

1;γ are identically zero for any p ∈ {ℓℓ, jℓn, jℓf} (see appendix B).

Having investigated both the S+− and D+− distributions, we do not need to con-

sider the lepton charge asymmetry A+−, which is simply the ratio of D+− and S+− (see

eq. (3.53)). Numerically the asymmetry A+− and the difference D+− show a very similar

pattern of their distributions, and thus provide roughly the same amount of information.

However, as we emphasized in sections 3.2 and 4.2, there are cases where the asymmetry

A+− (as well as D+−) does not play any role at all. The cases of S=2 (FSFS) and S=3

(FSFV) discussed in the next subsection actually provide such an example.

In the remainder of this section, we shall repeat the exercise that we just went through,

each time taking our “data” from a different spin configuration, and trying to fit to it the

remaining12 5 spin possibilities.

5.2 FSFS and FSFV examples (S = 2, 3)

With the SPS1a parameters (5.9), eqs. (4.1)–(4.3) predict the following observable invariant

mass distributions for the FSFS model

L+−
2 = 2 − 2m̂2

ℓℓ , (5.13)

S+−
2 =















2.898 m̂2
jℓ ≤ 0.632

1.316 0.632 ≤ m̂2
jℓ ≤ 0.653

−16.583 + 16.583 m̂2
jℓ − 16.583 log m̂2

jℓ 0.653 ≤ m̂2
jℓ ,

(5.14)

D+−
2 = 0 , (5.15)

which are shown by the solid magenta lines in figures 4(b), 5(b), and 6(b), correspondingly.

Similarly, for the FSFV model we get

L+−
3 = 1.052 − 0.104 m̂2

ℓℓ , (5.16)

S+−
3 =















2.815 m̂2
jℓ ≤ 0.632

1.233 0.632 ≤ m̂2
jℓ ≤ 0.653

−0.860 + 0.860 m̂2
jℓ − 3.590 log m̂2

jℓ 0.653 ≤ m̂2
jℓ ,

(5.17)

D+−
3 = 0 , (5.18)

which are shown with solid magenta lines in figures 4(c), 5(c), and 6(c), correspondingly.

The distributions (5.13)–(5.15) and (5.16)–(5.18) will be the input sets of data for our next

two exercises.

Perhaps the most striking feature in each of the data sets (5.13)–(5.15) and (5.16)–

(5.18) is that the D+− distribution, and consequently, the lepton charge asymmetry A+−,

are both identically zero. Therefore, they do not convey any information about the spins,

12Obviously the “correct” spin configuration will always give a good fit to its own “data”.
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since any spin configuration can fit those distributions with the proper choice of parameters

as shown in figures 6(b) and 6(c). This being the case, we should concentrate on the L+−

and S+− distributions.

First we shall discuss the case when the data comes from the FSFS (S = 2) model,

eqs. (5.13)–(5.15). Again, we begin our analysis with L+−, which in this case shows very

good discrimination, and can already rule out all of the “wrong” spin combinations. As

explained in section 4.1, FSFS (S = 2) can sometimes be faked by the FSFV (S=3) model,

but this could only happen if the α parameter in the data satisfies eq. (4.29), i.e.

|α2| ≤
∣

∣

∣

∣

1 − 2z

1 + 2z

∣

∣

∣

∣

≈ 0.05 . (5.19)

Since for SPS1a α = 1 (see eq. (5.9)), this condition is not satisfied and the FSFV model

cannot fake the FSFS “data”. This is confirmed by our result in figure 4(b).

Since the L+− distribution alone already singles out the correct spin configuration, we

do not even need to consider the S+− distribution. It is worth pointing out, however, that

S+− in this ideal case also can rule out all “wrong” spin models, although the differences

are not so pronounced as for L+−, and in reality are likely to be washed out. In summary,

the FSFS “data” can be unambiguously interpreted in relation to the spin issue, and we

can also get a measurement of the parameter α. On the other hand, the parameters β and

γ will remain undetermined, since their corresponding basis functions F (p)
2;β and F (p)

2;γ are

identically zero for any p ∈ {ℓℓ, jℓn, jℓf} (see appendix B).

Now we shall discuss the case when the data comes from the FSFV (S = 3) model,

eqs. (5.16)–(5.18). This will provide our first example where our spin measurement ends

up being inconclusive, yielding two different, equally plausible, possibilities for the spin

chain. This result should have already been anticipated, based on our general discussion

in section 4.1. There we showed that for any given FSFV data, the FSFS model (S = 2)

can always provide a perfect fit, and furthermore, the value of α2 that would be measured

for the “twin” FSFS model is

α2 = α3
1 − 2z

1 + 2z
≈ 0.05 , (5.20)

where we used the SPS1a values for α3 = 1 and z = 0.451. Our numerical study explicitly

confirms this general expectation as shown in figures 4(c), 5(c) and 6(c). In addition, we

checked that the mjℓℓ distributions for those two “twin” spin models are also identical.

5.3 FVFS and FVFV examples (S = 4, 5)

In this subsection we discuss the case of the other “twin” spin pair from section 4.1, namely

S = 4 and S = 5 (FVFS and FVFV). Using the SPS1a values for the model-dependent

parameters, we obtain the following distributions for the FVFS case

L+−
4 = 0.492 + 1.016 m̂2

ℓℓ , (5.21)
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S+−
4 =



























2.307 + 3.455 m̂2
jℓ − 4.553 m̂4

jℓ m̂2
jℓ ≤ 0.632

1.028 + 0.577 m̂2
jℓ 0.632 ≤ m̂2

jℓ ≤ 0.653

−42.563 − 12.368 m̂2
jℓ + 54.931 m̂4

jℓ

−
(

7.871 + 90.785 m̂2
jℓ

)

log m̂2
jℓ 0.653 ≤ m̂2

jℓ ,

(5.22)

D+−
4 =



























−0.22 + 0.616 m̂2
jℓ m̂2

jℓ ≤ 0.632

−0.092 + 0.212 m̂2
jℓ 0.632 ≤ m̂2

jℓ ≤ 0.653

−3.087 + 3.087 m̂2
jℓ

−
(

0.874 + 2.678 m̂2
jℓ

)

log m̂2
jℓ 0.653 ≤ m̂2

jℓ ,

(5.23)

which are shown with the solid (magenta) lines in figures 4(d), 5(d), and 6(d), correspond-

ingly.

For the FVFV case we get

L+−
5 = 0.974 + 0.053 m̂2

ℓℓ , (5.24)

S+−
5 =



























2.496 + 2.908 m̂2
jℓ − 4.553 m̂4

jℓ m̂2
jℓ ≤ 0.632

1.217 + 0.030 m̂2
jℓ 0.632 ≤ m̂2

jℓ ≤ 0.653

27.809 − 43.679 m̂2
jℓ + 15.870 m̂4

jℓ

+
(

14.382 − 4.710 m̂2
jℓ

)

log m̂2
jℓ 0.653 ≤ m̂2

jℓ ,

(5.25)

D+−
5 =



























−0.139 + 0.415 m̂2
jℓ m̂2

jℓ ≤ 0.632

−0.011 + 0.011 m̂2
jℓ 0.632 ≤ m̂2

jℓ ≤ 0.653

1.109 − 1.109 m̂2
jℓ

+
(

1.004 − 0.139 m̂2
jℓ

)

log m̂2
jℓ 0.653 ≤ m̂2

jℓ ,

(5.26)

and those are shown by the solid (magenta) lines in figures 4(e), 5(e) and 6(e).

The end result of the two exercises is very similar to what we obtained in the previous

subsection for the other “twin” model pair (FSFS and FSFV). It could have also been

anticipated from our general discussion in section 4.1. When going in the forward direction,

i.e. starting with the FVFS “data” and fitting to it the other 5 models, we do not encounter

any spin ambiguities. As already determined in the previous subsection, this is because the

SPS1a value of the α parameter (α = 1) does not satisfy the necessary condition (4.40) for

an FVFV model to fake the FVFS data. As a result, the two L+− and S+− distributions

are already sufficient to pin down the spin case scenario, and the D+− distribution can

then be used as a cross-check and for a measurement of the β and γ parameters.

However, when going in the reverse direction, i.e. starting with the FVFV “data” and

fitting the other 5 models including FVFS to it, we do encounter a spin ambiguity, just

like in the S = 3 exercise above. Again, the reason for this was already explained in

section 4.1. In agreement with our analytical results, figures 4(e), 5(e) and 6(e) show that

the FVFS model provides an identical match to the FVFV “data” for all three observable
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distributions L+−, S+− and D+−. The good news, however, is that while we are left with

a two-fold ambiguity with respect to the spins, for each spin scenario the parameters α, β

and γ are precisely measured, so that we have independent measurements of three different

combinations of the heavy partner couplings and mixing angles. In section 5.5 below we

shall show how to interpret those measurements in terms of the more fundamental model

parameters aL, aR, bL, bR, cL, cR and f .

5.4 SFVF example (S = 6)

Our final example is the SFVF spin chain, for which the SPS1a model parameters (5.9)

predict the following observable distributions

L+−
6 = 1.626 − 0.981 m̂2

ℓℓ − 0.405 m̂4
ℓℓ , (5.27)

S+−
6 =















2.87 m̂2
jℓ ≤ 0.632

1.288 0.632 ≤ m̂2
jℓ ≤ 0.653

−0.344 − 4.493 m̂2
jℓ + 4.837 m̂4

jℓ − 5.870 log m̂2
jℓ 0.653 ≤ m̂2

jℓ,

(5.28)

D+−
6 =



























−0.322 + 0.786 m̂2
jℓ m̂2

jℓ ≤ 0.632

−0.406 + 1.051 m̂2
jℓ 0.632 ≤ m̂2

jℓ ≤ 0.653

5.870 − 11.674 m̂2
jℓ + 5.804 m̂4

jℓ

+
(

3.384 − 3.595 m̂2
jℓ

)

log m̂2
jℓ 0.653 ≤ m̂2

jℓ,

(5.29)

shown with solid (magenta) lines in figures 4(f), 5(f) and 6(f).

The case of S = 6 (SFVF) is very special, since in this case the dilepton invariant

mass distribution (5.27) exhibits a characteristic m̂4 term which is not present for any of

the other 5 spin configurations that we are considering. Note that the existence of an m̂4

term in the dilepton SFVF data is generic, i.e. does not depend on the values of the model-

dependent parameters such as α. This could be easily understood by realising that the m̂4

dependence originates from the “phase space” basis function F (ℓℓ)
6;δ , which enters our general

formula (4.1) for the dilepton distribution without any model-dependent coefficients. More

generally, an inspection of table 8 reveals that the dilepton invariant mass distribution is

in general given by some polynomial in terms of m̂2, whose power is equal to twice the

spin of the intermediate particle B.13 Only in the SFVF case (S=6) do we have a spin 1

intermediate particle which brings about an m̂4 term in L+−. If the presence of this term

can be observed in the dilepton data, it would unambiguously14 signal the presence of a

spin 1 mediator. Of course, the size of the coefficient of the m̂4 term depends on the mass

spectrum in the model, but it cannot be vanishingly small — this would require either

z = 1 or y = 1, which would correspondingly close off the B → Aℓ or the C → Bℓ decay,

and the whole decay chain will become unobservable. One of our general conclusions,

13A similar statement can be made about the mjℓn invariant mass distributions from table 9, relating

the power of the m̂2
jℓn

to the spin of the intermediate C particle.
14This observation is subject to our assumption that we do not consider heavy particles of spin 3/2 or

higher. In general, an m̂4 dependence would imply that the spin of the mediating particle is at least 1.
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Result from Data originating from model Total No.

fitting to SFSF FSFS FSFV FVFS FVFV SFVF of fakes

L+− only 5 1 3 2 4 1 10

S+− only 4 1 4 1 2 2 8

D+− only 1 6 6 1 3 1 12

L+− ⊕ S+− 3 1 2 1 2 1 4

L+− ⊕ D+− 1 1 3 1 2 1 3

S+− ⊕ D+− 1 1 4 1 2 1 4

L+− ⊕ S+− ⊕ D+− 1 1 2 1 2 1 2

Table 3: Summary of the results from our spin discrimination analysis. Each entry represents

the total number of models n which can perfectly fit the data sets listed in the first column, i.e.

each entry n implies an n-fold model ambiguity of the corresponding data. The last column lists

the total number of “wrong” spin configurations allowed by the corresponding data set, which was

obtained by summing all the n’s from the preceding 6 columns and subtracting 6 for the correct

configurations.

therefore, is that the SFVF model,15 if it exists, should be discernible from the dilepton

data alone. Our numerical results in figure 4(f) confirm this conclusion — we see that

none of the other five models can reproduce the SFVF dilepton data, due to the presence

of the m̂4 term. Pictorially this can be seen from the fact that the L+− predictions of

the S = 1, 2, 3, 4, 5 models in figure 4 are always straight lines, while for the S = 6 model

(SFVF) the prediction is never a straight line, due to the higher order m̂ dependence.

Before we move on to the next subsection, where we shall interpret our measurements

of the α, β and γ parameters, we briefly summarise the results from the preceding six

exercises in table 3. The table shows the number of different spin configurations from

table 1 which can fit perfectly a given data set (L+−, S+−, D+−, or some combination

thereof). Since this number depends on the spin configuration of the input “data”, we show

6 different columns, one for each different spin configuration of the “data”. The last column

lists the total number of “wrong” spin configurations allowed by the corresponding data

set in all 6 exercises. This number was obtained simply by summing all the entries from

the preceding 6 columns and subtracting 6 to exclude the correct configurations among

them.

While one should be mindful that the number counts exhibited in table 3 are only valid

for the SPS1a parameter choice, there are still some interesting conclusions which can be

drawn from it. For example, we do not notice any particular pattern in the horizontal

direction. In particular, the discriminating power of the different data sets, say L+−, S+−

and D+−, varies greatly from model to model. There are cases where a single distribution

works very well, for example L+− for FSFS and SFVF, S+− for FSFS and FVFS and D+−

for SFSF, FVFS and SFVF. In all those cases the spin configuration is uniquely fixed by

studying a single distribution! On the other hand, there are also cases where each one of

these individual distributions performs rather poorly, for example L+− for SFSF, S+− for

15Or more generally, a spin 1 or higher intermediate particle.
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Spin Parameters measured from distribution

chain L+− S+− D+− L+− ⊕ S+− ⊕ D+−

SFSF − − β β

FSFS α α − α

FSFV α α − α

FVFS α α β, γ α, β, γ

FVFV α α β, γ α, β, γ

SFVF α α β, γ α, β, γ

Table 4: Available measurements of the model-dependent parameters α, β and γ for each of the

six spin configurations.

SFSF and FSFV and D+− for FSFS and FSFV. In the end, each one of the L+−, S+−

and D+− distributions, when considered in isolation, yields on the order of 10 fake spin

configurations. What this simply means is that no single distribution can be universally

“better” than the others.

Things begin to get more interesting when we start combining information gained from

2 or more different distributions. For example, when we combine any 2 out of our three

observable distributions L+−, S+− and D+−, the total number of fake solutions drops

down to 3 or 4. Now again, which particular pair works better, is a model-dependent

issue: L+− ⊕ S+− fails for the SFSF model, while L+− ⊕ D+− and S+− ⊕ D+− both

fail for the FSFV model. Finally, combining the information from all three distributions,

L+− ⊕ S+− ⊕ D+−, we narrow down the remaining spin choices even further, but as

we saw in sections 5.2 and 5.3, there are still two cases of exact duplication, which are

nothing but the “twin” spin scenarios of section 4.1. Since this duplication is due to an

exact mathematical identity, it will obviously still persist if we were to repeat our analysis

including all the experimental realism (backgrounds, resolution, combinatorics, etc.). In

fact, due to the expected imperfections in the real data, one may get even more duplicate

examples, if anything.

5.5 Measurements of couplings and mixing angles

Recall that our general method from section 4 yields not only a determination of a possible

spin chain fitting the data, but also a measurement of the model-dependent α, β and γ pa-

rameters from eqs. (4.4)–(4.6). Even in the spin duplication scenarios found in sections 5.2

and 5.3, we still have a certain measurement of the α, β and γ coefficients for each of the

two allowed spin chains. This is illustrated in table 4 where we summarize the available

measurements of the α, β and γ parameters in each individual spin case. Notice that only

in the last three spin cases (FVFS, FVFV and SFVF) we are able to measure the complete

set of all three parameters α, β and γ. In contrast, for the SFSF model chain we can

only determine β, while α and γ remain unknown. On the other hand, for the FSFS and

FSFV chains we can only determine α, while β and γ remain arbitrary. In the remainder

of this section we shall discuss the interpretation of those measurements in terms of the
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couplings and mixing angles of the heavy partners, i.e. we shall relate the measured values

of α and/or β and/or γ to the underlying model parameters f , ϕa, ϕb and ϕc.

First, let us consider the case where we determine a spin chain to be one of the

following three: FVFS, FVFV or SFVF. Then, as seen from table 4, we will be able to

measure the values of all three parameters α, β and γ. If we have correctly determined

the spin chain, these values will be simply the starting SPS1a inputs (5.9). Substituting

those in eqs. (4.12)–(4.17), we obtain the two sets of solutions discussed at the beginning

of section 4:

|aL| = 0, |aR| = 1, |bL| = 0, |bR| = 1, |cL| =

√

1

2
+

0.2

2f − 1
, |cR| =

√

1

2
− 0.2

2f − 1
, (5.30)

and

|aL| = 1, |aR| = 0, |bL| = 1, |bR| = 0, |cL| =

√

1

2
− 0.2

2f − 1
, |cR| =

√

1

2
+

0.2

2f − 1
, (5.31)

where the first (second) solution corresponds to choosing the upper (lower) sign in

eqs. (4.12)–(4.17). As expected, we obtain that each set is a one-parameter family of

solutions, parameterised by the value of the particle-antiparticle ratio f . The first solution

set (5.30) reproduces the SPS1a parameter set for f = 0.7, but of course, we would have

no way of knowing that f = 0.7 is the correct value of f , since we would have to measure

f independently by some other means. However, notice that even though we do not know

the exact value of f at this point, the solutions (5.30)–(5.31) unambiguously restrict the

allowed range for f from (4.19) to be

0.7 ≤ f ≤ 1 , (5.32)

which is by itself already an important and useful experimental determination.

Now let us discuss more specifically the case where the data is due to an FVFS or an

FVFV spin chain (S = 4 or S = 5). As already explained in section 4.1 and explicitly

seen in our examples in section 5.3, here we may encounter a second solution for the spin

chain, with its own measured α, β and γ parameters. We remind the reader that when

the data comes from an FVFV chain, there is always a duplicate spin solution due to an

FVFS chain, while if the data comes from an FVFS chain, the duplicate FVFV solution

exists only if the conditions (4.40), (4.41) are satisfied. While the duplicate spin chain

prevents us from uniquely resolving the spin question, the interpretation of its α, β and γ

parameters can be done in a very similar fashion. Consider our duplication example from

section 5.3 where an FVFS (S = 4) spin chain was able to “fake” the FVFV (S = 5) data.

All three parameters α, β and γ were still uniquely measured but the obtained values were

not the starting SPS1a values. Instead, our fitting procedure found

α = 0.05, β = −0.4, γ = −0.02 (5.33)

as shown in figure 4(e), 5(e) and 6(e). We see that the β parameter for the twin spin chain

was found to be the same as the true β parameter of the data (β = −0.4), while both
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the α and γ parameters of the twin spin case are a factor of 20 smaller than the original

inputs (5.9). This fact can be easily understood from our general results from section 4.1

— the conditions (4.40), (4.41) which guarantee the existence of a duplicate solution, relate

the values of α and γ for the two spin chains, and by the same factor of 1−2z
1+2z

≈ 1
20 , where we

have used the SPS1a value of z = 0.451. Just as before, the measurements (5.33) translate

into a measurement of the effective couplings and mixing angles as a function of f , up to a

two-fold ambiguity. Substituting (5.33) in eqs. (4.12)–(4.17), we obtain the two solutions

|aL| = 0.69, |aR| = 0.72, |bL| = 0, |bR| = 1, |cL| =

√

1

2
+

0.2

2f − 1
, |cR| =

√

1

2
− 0.2

2f − 1
,

(5.34)

or

|aL| = 0.72, |aR| = 0.69, |bL| = 1, |bR| = 0, |cL| =

√

1

2
− 0.2

2f − 1
, |cR| =

√

1

2
+

0.2

2f − 1
.

(5.35)

As expected, these solutions exhibit the same L ↔ R symmetry (4.11) as the solu-

tions (5.30) and (5.31) for the “correct” spin configuration. Comparing eqs. (5.34), (5.35)

to eqs. (5.30), (5.31), we see that we obtain the same result for the |bL|, |bR|, |cL| and |cR|
couplings! In other words, although it may not be clear what is the correct spin chain —

FVFS or FVFV, the chirality of the couplings at the quark and at the near lepton vertex

will be known (up to the inescapable two-fold ambiguity due to (4.11)). This can be simply

understood by noticing from eqs. (4.14)–(4.17) that the couplings |bL|, |bR|, |cL| and |cR|
only depend on α and γ through their ratio, which is the same for the correct and the fake

spin solution, since α and γ are scaled by the same factor 1−2z
1+2z

(see eqs. (4.34), (4.36). Just

as before, for the “wrong” spin chain we also obtain a constraint on the allowed range of

the particle-antiparticle fraction f at the LHC:

0.7 ≤ f ≤ 1 . (5.36)

Notice that this is identical to the result (5.32) for the “correct” spin chain, so that the

experimental determination of the range of the f parameter also does not suffer from the

duplicate spin ambiguity.

This concludes our discussion of the spin cases where we can measure all three pa-

rameters α, β and γ. For the remaining three spin chains, only partial information will be

available (see table 4). For example, in case of SFSF we can only measure the β parameter,

which gives us one relation among ϕb and ϕ̃c

cos 2ϕb cos 2ϕ̃c = −0.4 , (5.37)

or alternatively, among ϕb, ϕc and f :

(2f − 1) cos 2ϕb cos 2ϕc = −0.4 . (5.38)

Unfortunately, we are unable to pin down further the precise values of ϕb, ϕc and f , and

furthermore, ϕa remains completely unknown.
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Similarly, in case of FSFS and FSFV, we can measure the α parameter, which gives

us a relation between ϕa and ϕb:

α = cos 2ϕb cos 2ϕa = 1 . (5.39)

Normally, we would not be able to go any further, but the SPS1a parameter set is “lucky”

in the sense that it yields one of the two extreme values of α (see figure 3). In those

circumstances, we can determine the actual values of ϕa and ϕb, and subsequently, |aL|,
|aR|, |bL| and |bR|, up to the usual L ↔ R ambiguity:

ϕa = ϕb =
π

2
=⇒ |aL| = 0, |aR| = 1, |bL| = 0, |bR| = 1 , (5.40)

or

ϕa = ϕb = 0 =⇒ |aL| = 1, |aR| = 0, |bL| = 1, |bR| = 0 . (5.41)

Unfortunately, in either case, |cL|, |cR| and f will remain unconstrained.

Finally, we briefly comment on the possibility of spin duplication between FSFS and

FSFV discussed in section 4.1 and section 5.2. Here we will also obtain a measurement of

the α parameter for the “wrong” spin chain. The two α parameters (for the “wrong” and

for the “correct” spin configurations) are related according to (4.25) and the analysis for

the couplings in the case of the “wrong” spin chain can be done in complete analogy.

6. Summary and conclusions

We conclude by summarizing the main steps of our method for measuring spins, couplings

and mixing angles of heavy partners in cascade decays with missing energy. We shall then

contrast it to other proposals for spin measurements in the literature.

The method involves the following basic steps.

1. Data preparation. Identify a decay chain of interest which would yield three observ-

able SM fermions. (In this paper we considered the example of a quark jet followed

by two leptons, which is commonly encountered in models of supersymmetry and

extra dimensions.) Then form the three observable invariant mass distributions for

each pair of well-defined objects: {ℓ+ℓ−}, {jℓ+} and {jℓ−}. In order to reduce the

combinatorial background, perform an opposite-flavor subtraction on the leptons and

a mixed-event subtraction on the jet. Apply final cuts to possibly suppress any SM

and new physics backgrounds. As the end product from this step one obtains the

three ditributions L+−, S+− and D+− defined in eqs. (4.1)–(4.3).

2. Mass measurements. This step is optional, since the mass measurements can in

principle be performed simultaneously with the spin fits described below. However, in

practice we expect that the invariant mass distributions would reveal their kinematic

endpoints rather early on, so that the mass spectrum can be measured in advance of

the spin determination. At the end of this step one would know the mass spectrum,

i.e. the values of x, y and z which enter the functions F , as well as the kinematic

endpoints mmax
p which unit normalise our invariant mass variables (see eqs. (2.2)

and (3.27)).
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Data Can this data be fitted by model

from SFSF FSFS FSFV FVFS FVFV SFVF

SFSF yes no no no no no

FSFS no yes maybe no no no

FSFV no yes yes no no no

FVFS no no no yes maybe no

FVFV no no no yes yes no

SFVF no no no no no yes

Table 5: Expected outcomes from our spin discrimination analysis, barring numerical accidents

due to very special mass spectra. The two cases labelled “maybe” correspond to the potential

confusion of an FSFS (FVFS) chain with an FSFV (FVFV) chain, which occurs only for a certain

range of the model-dependent parameters – see eqs. (4.29) and (4.40), (4.41).

3. Spin measurements. This step represents the actual spin measurement. One tries

to fit16 the data for the L+−, S+− and D+− distributions obtained in Step 1 with

the theoretical predictions (4.1)–(4.3), for each value of S, i.e. for each set of allowed

spin configurations for particles D, C, B and A (see table 1). If the fit is good,

that particular spin chain is ruled in, while if the fit is bad, that particular spin

chain will be ruled out. Our expectations for the generic outcome of this exercise

are summarised in table 5. When using the data from all three distributions L+−,

S+− and D+−, we expect that the fits will be able to rule out all but the correct

spin configuration. The only exceptions are the spin duplication cases discussed in

section 4.1, when one may end up with at most two spin chain alternatives.

4. Measurements of couplings and mixing angles. In this step one uses any available

best-fit values for α, β and γ obtained in the previous step, and determines the

couplings |aL|, |aR|, |bL|, |bR|, |cL| and |cR| from eqs. (4.12)–(4.17). There will be

two different solutions due to the L ↔ R symmetry, as discussed in section 4 and

illustrated with some examples in section 5.5. In addition, eq. (4.19) provides a

restriction on the allowed range of values for the particle-antiparticle fraction f at

the LHC.

Having summarised the main steps of our method, we are ready to compare it to other

approaches for spin measurements which already exist in the literature. In principle, no

single method is universally applicable, therefore the availability of different and comple-

mentary techniques is an important virtue. Which method ends up being most successful

in practice, will depend on the specific new physics scenario that we may encounter. With

those caveats, we should point out some features of our method which are likely to make it

relevant and successful, if a missing energy signal of new physics is seen at the LHC and/or

the Tevatron.

16In general, those are three-parameter fits for the floating, a priori unknown, coefficients α, β and γ.

However, as discussed in section 4 and illustrated with our numerical examples in section 5, one could make

use of the fact that the L+− and S+− distributions only depend on the parameter α. Thus one could first

extract α from L+− and/or S+−, and then use this value to fit D+− for β and γ, as shown in appendix C.
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• Many of the existing techniques for spin determinations (see, for example, [31, 32,

46, 47]) have been originally developed in the context of lepton colliders, where the

total center of mass energy in each event is known. Consequently, at hadron colliders,

those methods are applicable only if the events can be fully reconstructed. In new

physics scenarios with dark matter WIMPs, this appears to be rather challenging,

since there are two invisible WIMP particles escaping the detector. In some special

circumstances, where two sufficiently long decay chains can be identified in the event,

full reconstruction might be possible [10 – 12], but in that case, spin determination

appears to require large data samples. In contrast, our method relies on invariant

mass distributions, which are frame-independent, and we do not need to have the

event fully reconstructed. Furthermore, the event reconstruction techniques currently

being discussed rely on the pair-production of two heavy particles, both of which

decay visibly to the lightest WIMP. Our method, on the other hand, does not require

the presence of two separate decay chains in the event, and can be in principle also

applied to the A+D associated production of a WIMP with one other heavy partner,

e.g. neutralino-squark (χ̃0
1q̃) associated production in supersymmetry.

• The invariant mass distributions L+−, S+− and D+− that we propose to analyse, are

the basic starting point for any precision study of new physics parameters. In the

past they have been extensively discussed in relation to mass measurements, and we

now simply propose to fully analyse them for the encoded spin information as well.

• One major advantage of our method in comparison to various event counting tech-

niques [34, 36, 45, 48] is that we do not need to know anything about a number of

additional and a priori also unknown quantities such as the production cross-sections

for the different parton-level initial states, the branching fractions, the experimental

efficiencies, etc. Indeed, our method in essence only uses unit-normalised distribu-

tions, and is not affected by any of these additional variables.

• The previous three advantages are common to all studies which have relied exclusively

on invariant mass distributions for spin determinations [19 – 22, 33, 37 – 44]. In com-

parison to those works, the main advantage of our approach is that it is completely

general and model-independent, in particular we make no a priori assumptions about

the type of couplings in each vertex of figure 1, or about the particle-antiparticle

fraction f . As a result, we were actually able to come up with measurements of

certain combinations of those couplings and the f parameter (see sections 4 and 5.5).

In conclusion, we reiterate that our goal in this paper was simply to present the basic

idea of our method, and demonstrate that it can work as a matter of principle. Therefore

in our analysis in section 5 we did not include any realistic detector simulation, back-

grounds (SM and combinatorial) etc. All of these factors will be investigated in a future

publication [18].
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A. The basis functions F
(p)
S;IJ

The basis functions F (jℓn)
S;IJ (m̂2;x, y, z) are listed in table 6 and the basis functions

F (ℓℓ)
S;IJ(m̂2;x, y, z) are given in table 7. Below we explicitly show the remaining basis func-

tions F (jℓf )
S;IJ (m̂2;x, y, z):

SFSF (S = 1)

F (jℓf )
1;11 (m̂2;x, y, z) = F (jℓf )

1;12 (m̂2;x, y, z) =
−2

(1−y)2















(1−y)+log y if m̂2 ≤ y

1−m̂2+log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(A.1)

F (jℓf )
1;21 (m̂2;x, y, z) = F (jℓf )

1;22 (m̂2;x, y, z) =
2

(1−y)2















(1−y)+y log y if m̂2 ≤ y

1−m̂2+y log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(A.2)

FSFS (S = 2)

F (jℓf )
2;11 (m̂2;x, y, z) = F (jℓf )

2;21 (m̂2;x, y, z) =
−2

(1−y)2















(1−y)+log y if m̂2 ≤ y

1−m̂2+log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(A.3)

F (jℓf )
2;12 (m̂2;x, y, z) = F (jℓf )

2;22 (m̂2;x, y, z) =
2

(1−y)2















(1−y)+y log y if m̂2 ≤ y

1−m̂2+y log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(A.4)

FSFV (S = 3)

F (jℓf )
3;11 (m̂2;x, y, z) = F (jℓf )

3;21 (m̂2;x, y, z) (A.5)

=
−2

(1−y)2(1+2z)















(1−y)(1−2z)+(1−2yz) log y if m̂2 ≤ y

(1−m̂2)(1−2z)+(1−2yz) log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

F (jℓf )
3;12 (m̂2;x, y, z) = F (jℓf )

3;22 (m̂2;x, y, z) (A.6)
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=
2

(1−y)2(1+2z)















(1−y)(1−2z)+(y−2z) log y if m̂2 ≤ y

(1−m̂2)(1−2z)+(y−2z) log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

FVFS (S = 4)

F (jℓf )
4;11 (m̂2;x, y, z)

=
6

(1+2x)(2+y)(1−y)2



































(1−y)[4x−y−4m̂2(2−3x)]

+[(−1+4x)y+4m̂2{1−(2+y)(1−x)}] log y if m̂2 ≤ y

(1−m̂2)[4x(2y+1)−5y−4m̂2(1−x)]

+[(−1+4x)y+4m̂2{1−(2+y)(1−x)}] log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(A.7)

F (jℓf )
4;12 (m̂2;x, y, z)

=
6

(1+2x)(2+y)(1−y)2



















































(1−y)[2+3y−2x(5+y)+4m̂2(2−3x)]

+[y(4+y)−4x(1+2y)−4m̂2{1−(2+y)(1−x)}] log y

if m̂2 ≤ y

(1−m̂2)[2+9y−2x(5+6y)+2m̂2(1−x)]

+[y(4+y)−4x(1+2y)−4m̂2{1−(2+y)(1−x)}] log m̂2

if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(A.8)

F (jℓf )
4;21 (m̂2;x, y, z)

=
6

(1+2x)(2+y)(1−y)2



































(1−y)[−y−4m̂2(2−x)]

−[y+4m̂2{1+y(1−x)}] log y if m̂2 ≤ y

(1−m̂2)[−5y−4m̂2(1−x)]

−[y+4m̂2{1+y(1−x)}] log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(A.9)

F (jℓf )
4;22 (m̂2;x, y, z)

=
6

(1+2x)(2+y)(1−y)2



































(1−y)[2+3y+2x(1−y)+4m̂2(2−x)]

+[y(4+y)+4m̂2{1+y(1−x)}] log y if m̂2 ≤ y

(1−m̂2)[2+9y+2x(1−2y)+2m̂2(1−x)]

+[y(4+y)+4m̂2{1+y(1−x)}] log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(A.10)

FVFV (S = 5)

F (jℓf )
5;11 (m̂2;x, y, z) =

6

(1+2x)(2+y)(1−y)2(1+2z)
×
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×







































































(1−y)[4x−y+2z{2+3y−2x(5+y)}
−4m̂2(2−3x)(1−2z)]−[y−2yz(4+y)+4x{2z−y(1−4z)}
+4m̂2{1+y−x(2+y)}(1−2z)] log y

if m̂2 ≤ y

(1−m̂2)[4x{1−5z+2y(1−3z)}−5y+2z(2+9y)

−4m̂2(1−x)(1−z)]−[y−2yz(4+y)+4x{2z−y(1−4z)}
+4m̂2{1+y−x(2+y)}(1−2z)] log m̂2

if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(A.11)

F (jℓf )
5;12 (m̂2;x, y, z) =

6

(1+2x)(2+y)(1−y)2(1+2z)
×

×







































































(1−y)[2+3y−2x(5+y)+2(4x−y)z

+4m̂2(2−3x)(1−2z)]−[4x{1+2y(1−z)}−y(4+y−2z)

−4m̂2{1+y−x(2+y)}(1−2z)] log y

if m̂2 ≤ y

(1−m̂2)[2−2x{5−4z+2y(3−4z)}+y(9−10z)

+2m̂2(1−x)(1−4z)]−[4x{1+2y(1−z)}−y(4+y−2z)

−4m̂2{1+y−x(2+y)}(1−2z)] log m̂2

if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(A.12)

F (jℓf )
5;21 (m̂2;x, y, z) =

6

(1+2x)(2+y)(1−y)2(1+2z)
×

×



















































(1−y)[−y+2{2+2x(1−y)+3y}z−4m̂2(2−x)(1−2z)]

−[y{1−2(4+y)z}+4m̂2(1+y−xy)(1−2z)] log y

if m̂2 ≤ y

(1−m̂2)[4(1+x)z−y{5−2(9−4x)z}−4m̂2(1−x)(1−z)]

−[y{1−2(4+y)z}+4m̂2(1+y−xy)(1−2z)] log m̂2

if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(A.13)

F (jℓf )
5;22 (m̂2;x, y, z) =

6

(1+2x)(2+y)(1−y)2(1+2z)
×
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

















































(1−y)[2+2x(1−y)+y(3−2z)+4m̂2(2−x)(1−2z)]

+[y(4+y−2z)+4m̂2(1+y−xy)(1−2z)] log y

if m̂2 ≤ y

(1−m̂2)[2+2x(1−2y)+y(9−10z)+2m̂2(1−x)(1−4z)]

+[y(4+y−2z)+4m̂2(1+y−xy)(1−2z)] log m̂2

if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(A.14)

SFVF (S = 6)

F (jℓf )
6;11 (m̂2;x, y, z)

=
6

(1+2y)(1−y)2(2+z)



































(1−y)[2−3z−2y(1+z)+4m̂2(1−2z)]

−[z(1+4y)−4m̂2(1−z−yz)] log y if m̂2 ≤ y

(1−m̂2)[2−3z−8yz+2m̂2(1−z)]

−[z(1+4y)−4m̂2(1−z−yz)] log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(A.15)

F (jℓf )
6;12 (m̂2;x, y, z)

=
6

(1+2y)(1−y)2(2+z)



















































(1−y)[2−3z+2y(5−z)+4m̂2(3−2z)]

−[z(1+4y)−4y(2+y)−4m̂2(1+2y−z−yz)] log y

if m̂2 ≤ y

(1−m̂2)[2−3z+4y(5−2z)+2m̂2(1−z)]

−[z(1+4y)−4y(2+y)−4m̂2(1+2y−z−yz)] log m̂2

if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(A.16)

F (jℓf )
6;21 (m̂2;x, y, z)

=
6

(1+2y)(1−y)2(2+z)



































(1−y)[z−4m̂2(1−2z)]

+[yz−4m̂2(1−z−yz)] log y if m̂2 ≤ y

(1−m̂2)[z(1+4y)−4m̂2(1−z)]

+[yz−4m̂2(1−z−yz)] log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(A.17)

F (jℓf )
6;22 (m̂2;x, y, z)

=
6

(1+2y)(1−y)2(2+z)



































(1−y)[z−4y−4m̂2(3−2z)]

−[y(4−z)+4m̂2(1+2y−z−yz)] log y if m̂2 ≤ y

(1−m̂2)[z−4y(3−z)−4m̂2(1−z)]

−[y(4−z)+4m̂2(1+2y−z−yz)] log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(A.18)
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S Spins F
(jℓn)
S;11 (m̂2;x, y, z) = F

(jℓn)
S;12 (m̂2;x, y, z) F

(jℓn)
S;21 (m̂2;x, y, z) = F

(jℓn)
S;22 (m̂2;x, y, z)

1 SFSF 2m̂2 2(1−m̂2)

2 FSFS 1 1

3 FSFV 1 1

4 FV FS 3
(1+2x)(2+y)

{y+4(1−y+xy)m̂2−4(1−x)(1−y)m̂4} 3
(1+2x)(2+y)

{4x+y+4(1−2x−y+xy)m̂2−4(1−x)(1−y)m̂4}

5 FV FV 3
(1+2x)(2+y)

{y+4(1−y+xy)m̂2−4(1−x)(1−y)m̂4} 3
(1+2x)(2+y)

{4x+y+4(1−2x−y+xy)m̂2−4(1−x)(1−y)m̂4}

6 SFV F 2
1+2y

{2y+(1−2y)m̂2} 2
1+2y

{1−(1−2y)m̂2}

Table 6: Basis functions for the jℓn invariant mass distribution.

S Spins F
(ℓℓ)
S;11(m̂2; x, y, z) = F

(ℓℓ)
S;21(m̂2;x, y, z) F

(ℓℓ)
S;12(m̂

2;x, y, z) = F
(ℓℓ)
S;22(m̂

2;x, y, z)

1 SFSF 1 1

2 FSFS 2(1−m̂2) 2m̂2

3 FSFV 2
1+2z

{1−(1−2z)m̂2} 2
1+2z

{2z+(1−2z)m̂2}

4 FV FS 2
2+y

{y+(2−y)m̂2} 2
2+y

{2−(2−y)m̂2}

5 FV FV 2
(2+y)(1+2z)

{y+4z+(2−y)(1−2z)m̂2} 2
(2+y)(1+2z)

{2+2yz−(2−y)(1−2z)m̂2}

6 SFV F 3
(1+2y)(2+z)

{4y+z+4(1−2y−z+yz)m̂2−4(1−y)(1−z)m̂4} 3
(1+2y)(2+z)

{z+4(1−z+yz)m̂2−4(1−y)(1−z)m̂4}

Table 7: Basis functions for the dilepton invariant mass distribution.

B. The basis functions F
(p)
S;α, F

(p)
S;β, F

(p)
S;γ and F

(p)
S;δ

The basis functions F (ℓℓ)
S;α , F (ℓℓ)

S;β , F (ℓℓ)
S;γ and F (ℓℓ)

S;δ are listed in table 8. The basis functions

F (jℓn)
S;α , F (jℓn)

S;β , F (jℓn)
S;γ and F (jℓn)

S;δ are given in table 9. Below we explicitly show the remaining

basis functions F (jℓf )
S;α , F (jℓf )

S;β , F (jℓf )
S;γ and F (jℓf )

S;δ :

SFSF (S = 1)

F (jℓf )
1;α (m̂2;x, y, z) = F (jℓf )

1;γ (m̂2;x, y, z) = 0 (B.1)

F (jℓf )
1;β (m̂2;x, y, z) =

−1

(1−y)2















2(1−y)+(1+y) log y if m̂2 ≤ y

2(1−m̂2)+(1+y) log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(B.2)

F (jℓf )
1;δ (m̂2;x, y, z) =

−1

(1−y)2















(1−y) log y if m̂2 ≤ y

(1−y) log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(B.3)

FSFS (S = 2)

F (jℓf )
2;α (m̂2;x, y, z) =

−1

(1−y)2















2(1−y)+(1+y) log y if m̂2 ≤ y

2(1−m̂2)+(1+y) log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(B.4)
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F (jℓf )
2;β (m̂2;x, y, z) = F (jℓf )

2;γ (m̂2;x, y, z) = 0 (B.5)

F (jℓf )
2;δ (m̂2;x, y, z) =

−1

(1−y)2















(1−y) log y if m̂2 ≤ y

(1−y) log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(B.6)

FSFV (S = 3)

F (jℓf )
3;α (m̂2;x, y, z) =

−1

(1−y)2
1−2z

1+2z















2(1−y)+(1+y) log y if m̂2 ≤ y

2(1−m̂2)+(1+y) log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(B.7)

F (jℓf )
3;β (m̂2;x, y, z) = F (jℓf )

3;γ (m̂2;x, y, z) = 0 (B.8)

F (jℓf )
3;δ (m̂2;x, y, z) =

−1

(1−y)2















(1−y) log y if m̂2 ≤ y

(1−y) log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(B.9)

FVFS (S = 4)

F (jℓf )
4;α (m̂2;x, y, z) (B.10)

=
3

(1+2x)(2+y)(1−y)2



























































(1−y)[−2(1+2y)+2x(3+y)−16m̂2(1−x)]

−[y(5+y)−2x(1+3y)+8m̂2(1−x)(1+y)] log y

if m̂2 ≤ y

(1−m̂2)[−2(1+7y)+6x(1+2y)−6m̂2(1−x)]

−[y(5+y)−2x(1+3y)+8m̂2(1−x)(1+y)] log m̂2

if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

F (jℓf )
4;β (m̂2;x, y, z) (B.11)

=
−6x

(1+2x)(2+y)(1−y)2























2(1−y)+(1+y) log y if m̂2 ≤ y

2(1−m̂2)+(1+y) log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

F (jℓf )
4;γ (m̂2;x, y, z) (B.12)
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=
6x

(1+2x)(2+y)(1−y)2























4(1−y)(1+m̂2)+[(1+3y)+4m̂2] log y if m̂2 ≤ y

4(1−m̂2)(1+y)+[(1+3y)+4m̂2] log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

F (jℓf )
4;δ (m̂2;x, y, z) (B.13)

=
3

(1+2x)(2+y)(1−y)2











































2(1−y)(1+y)(1−x)

+[−2x(1+y)+y(3+y)] log y if m̂2 ≤ y

2(1−m̂2)(1−x){(1+2y)−m̂2}
+[−2x(1+y)+y(3+y)] log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

FVFV (S = 5)

F (jℓf )
5;α (m̂2;x, y, z)

=
3

(1+2x)(2+y)(1−y)2
1−2z

1+2z































































(1−y)[−2(1+2y)+2x(3+y)−16m̂2(1−x)]

−[y(5+y)−2x(1+3y)

+8m̂2(1−x)(1+y)] log y

if m̂2 ≤ y

(1−m̂2)[−2(1+7y)+6x(1+2y)−6m̂2(1−x)]

−[y(5+y)−2x(1+3y)

+8m̂2(1−x)(1+y)] log m̂2

if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(B.14)

F (jℓf )
5;β (m̂2;x, y, z)

=
−6x

(1+2x)(2+y)(1−y)2











2(1−y)+(1+y) log y if m̂2 ≤ y

2(1−m̂2)+(1+y) log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(B.15)

F (jℓf )
5;γ (m̂2;x, y, z)

=
6x

(1+2x)(2+y)(1−y)2
1−2z

1+2z



























4(1−y)(1+m̂2)

+[(1+3y)+4m̂2] log y if m̂2 ≤ y

4(1−m̂2)(1+y)

+[(1+3y)+4m̂2] log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(B.16)

F (jℓf )
5;δ (m̂2;x, y, z)

– 57 –



J
H
E
P
1
0
(
2
0
0
8
)
0
8
1

=
3

(1+2x)(2+y)(1−y)2



























2(1−y)(1+y)(1−x)

+[−2x(1+y)+y(3+y)] log y if m̂2 ≤ y

2(1−m̂2)(1−x){(1+2y)−m̂2}
+[−2x(1+y)+y(3+y)] log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

(B.17)

SFVF (S = 6)

F (jℓf )
6;α (m̂2;x, y, z) (B.18)

=
−6y

(1+2y)(1−y)2(2+z)















2(1−y)+(1+y) log y if m̂2 ≤ y

2(1−m̂2)+(1+y) log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

F (jℓf )
6;β (m̂2;x, y, z) (B.19)

=
3

(1+2y)(1−y)2(2+z)



















































(1−y)[2(1+3y)−2(2+y)z+16m̂2(1−z)]

+[2y(3+y)−(1+5y)z+8m̂2(1+y)(1−z)] log y

if m̂2 ≤ y

(1−m̂2)[2(1+8y)−4(1+3y)z+6m̂2(1−z)]

+[2y(3+y)−(1+5y)z+8m̂2(1+y)(1−z)] log m̂2

if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

F (jℓf )
6;γ (m̂2;x, y, z) (B.20)

=
−6

(1+2y)(1−y)2(2+z)















4(1−y)(y+m̂2)+[y(3+y)+4ym̂2] log y if m̂2 ≤ y

8y(1−m̂2)+[y(3+y)+4ym̂2] log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

F (jℓf )
6;δ (m̂2;x, y, z) (B.21)

=
3

(1+2y)(1−y)2(2+z)



































2(1−y)(1+y)(1−z)

+[−(1−y)(1+2y)+(1+3y)(1−z)] log y if m̂2 ≤ y

2(1−m̂2)(1−z){(1+2y)−m̂2}
+[−(1−y)(1+2y)+(1+3y)(1−z)] log m̂2 if y ≤ m̂2 ≤ 1

0 if m̂2 ≥ 1

C. Fitting procedure for the parameters α, β and γ

In the absence of any error bars, we use a rather naive matching criterion, namely

χ2(α, β, γ) ≡
∫ 1

0

(

f0(m̂
2, α0, β0, γ0) − f(m̂2, α, β, γ)

)2
dm̂2 , (C.1)
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S Spins F
(ℓℓ)
S;δ (m̂2; x, y, z) F

(ℓℓ)
S;α (m̂2;x, y, z) F

(ℓℓ)
S;β (m̂2; x, y, z) F

(ℓℓ)
S;γ (m̂2;x, y, z)

1 SFSF 1 0 0 0

2 FSFS 1 1−2m̂2 0 0

3 FSFV 1 1−2z
1+2z

(1−2m̂2) 0 0

4 FV FS 1 −2−y
2+y

(1−2m̂2) 0 0

5 FV FV 1 −
(2−y)(1−2z)
(2+y)(1+2z)

(1−2m̂2) 0 0

6 SFV F 3
(1+2y)(2+z)

{2y+z+4(1−y)(1−z)(m̂2−m̂4)} 6y
(1+2y)(2+z)

(1−2m̂2) 0 0

Table 8: Basis functions for the dilepton invariant mass distribution.

S Spins F
(jℓn)
S;δ (m̂2; x, y, z) F

(jℓn)
S;α (m̂2;x, y, z) F

(jℓn)
S;β (m̂2; x, y, z) F

(jℓn)
S;γ (m̂2;x, y, z)

1 SFSF 1 0 −(1−2m̂2) 0

2 FSFS 1 0 0 0

3 FSFV 1 0 0 0

4 FV FS 3
(1+2x)(2+y)

{2x+y+4(1−x)(1−y)(m̂2−m̂4)} 0 − 6x
(1+2x)(2+y)

(1−2m̂2) 0

5 FV FV 3
(1+2x)(2+y)

{2x+y+4(1−x)(1−y)(m̂2−m̂4)} 0 − 6x
(1+2x)(2+y)

(1−2m̂2) 0

6 SFV F 1 0 −1−2y
1+2y

(1−2m̂2) 0

Table 9: Basis functions for the jℓn invariant mass distribution.

where f0(m̂
2, α0, β0, γ0) represents the experimental data that needs to be fitted and

f(m̂2, α, β, γ) is the theoretical prediction for it. We then minimize the χ2(α, β, γ) function

for α, β and/or γ, as appropriate. α0, β0 and γ0 are fixed constant values of the α, β and γ

parameters as predicted for the corresponding study point. A more sophisticated analysis

including the expected statistical uncertainties is postponed for a future publication [18].

As we discussed in section 4, fitting to the L+− or to the S+− distribution is a simple

one-parameter fit for α, while fitting to the D+− data is a two-parameter fit for β and γ.

Figure 7 shows sample results from our D+− fits for β and γ performed in the course of

the exercises described in section 5. In each plot in figure 7, the “data” f0(m̂
2, α0, β0, γ0)

comes from the first spin chain (shown in red) at the top of each plot, which is then fitted

with the distribution f(m̂2, α, β, γ) predicted by the second spin chain (shown in blue).

The contour lines represent constant values of χ2(α, β, γ), where α has already been fixed

by fitting to L+−. The blue dot corresponds to the absolute minimum of χ2, ignoring

any restrictions on α, β and γ. However, the parameters α, β and γ are not completely

independent from each other. For any given α, the physically allowed region in the (β, γ)

parameter space is described by an envelope which satisfies

αβ ≤ γ, βγ ≤ α, γα ≤ β , if α > 0, β > 0 and γ > 0 , (C.2)

αβ ≥ γ, βγ ≤ α, γα ≥ β , if α > 0, β < 0 and γ < 0 , (C.3)

αβ ≥ γ, βγ ≥ α, γα ≤ β , if α < 0, β > 0 and γ < 0 , (C.4)

αβ ≤ γ, βγ ≥ α, γα ≥ β , if α < 0, β < 0 and γ > 0 . (C.5)

In figure 7 we denote this allowed region in white (sometimes it may reduce to a single line).

The green triangle corresponds to the minimum of the χ2 function within this restricted

parameter set. The green triangle solution for β and γ was then used for our plots in
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1Figure 7: Contour plots of χ2(α, β, γ) as a function of β and γ, with α already fixed by the fit

to the L+− data. The physically allowed region satisfying the constraints (C.2)–(C.5) is shaded in

white. The blue dot denotes the global χ2 minimum, while the green triangle denotes the location

of the χ2 minimum within the physically allowed (white-shaded) region. In each plot, the “data”

f0(m̂
2, α0, β0, γ0) comes from the first spin chain (shown in red) at the top of each plot, which is

then fitted with the distribution f(m̂2, α, β, γ) predicted by the second spin chain (shown in blue).

figure 6. For the two cases with FVFV (S=5) “data”, the global minimum happens to lie

within the (white) allowed region and so the blue dot and the green triangle coincide.

For the extreme values of |α|, the (white) allowed region collapses to one or two lines:

β = 0 or γ = 0 , if α = 0 , (C.6)

γ = ±β , if α = ±1 . (C.7)
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